1
|
Zhu L, Yang W, Luo J, Lu D, Hu Y, Zhang R, Li Y, Qiu L, Chen Z, Chen L, Liu H. Comparison of characteristics and immune responses between paired human nasal and bronchial epithelial organoids. Cell Biosci 2025; 15:18. [PMID: 39920853 PMCID: PMC11806626 DOI: 10.1186/s13578-024-01342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND The nasal epithelium, as part of a continuous and integrated airway epithelium, provides a more accessible sample source than the bronchial epithelium. However, the similarities and differences in gene expression patterns and immune responses between these two sites have not been extensively studied. RESULTS Four lines of matched nasal and bronchial airway epithelial cells obtained from the four patients were embedded in Matrigel and cultured in thechemically defined medium to generate patient-derived nasal organoids (NO) and bronchial organoids (BO). Histologic examination of nasal organoid tissue revealed high similarity and a reduced ciliary beat frequency compared to bronchial organoid tissue. Whole exome sequencing revealed that over 99% of single nucleotides were shared between the NO and matched BO and there was a 95% overlap in their RNA transcriptomes. RNA sequencing analysis of differentially expressed genes indicated a significant reduction in the immune response in NO. RSV infection revealed more productive replication in NO, with a downregulated immune pathway identified by RNA sequencing analysis and upregulated levels of pro-inflammatory cytokines in culture supernatants in NO compared to BO. CONCLUSIONS NO and BO serve as robust in vitro models, faithfully recapitulating the biological characteristics of upper respiratory epithelial cells. The different regions of respiratory epithelial cells exhibit distinct immune responses, underscoring their complementary roles in exploring airway immune mechanisms and disease pathophysiology.
Collapse
Affiliation(s)
- Lu Zhu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiaxin Luo
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Danli Lu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanan Hu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Zhang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Qiu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zelian Chen
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Lina Chen
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China.
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Sichuan University, Chengdu, China.
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Chakraborty R, Ray P, Barik S, Banik O, Mahapatra C, Banoth E, Kumar P. A Review on Microengineering of Epithelial Barriers for Biomedical and Pharmaceutical Research. ACS APPLIED BIO MATERIALS 2024; 7:8107-8125. [PMID: 39565389 DOI: 10.1021/acsabm.4c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Epithelial tissue forms a barrier around the human body and visceral organs, providing protection, permeation, sensation, and secretion. It is vital for our sustenance as it protects the tissue from harm and injury by restricting the entry of foreign bodies inside. Furthermore, it is a strong barrier to drugs, nutrients, and other essential deliverables. This layer also houses a large consortium of microbes, which thrive in tandem with human tissue, providing several health benefits. Moreover, the complex interplay of the microbiome with the barrier tissue is poorly understood. Therefore, replicating these barrier tissues on microdevices to generate physiological and pathophysiological models has been a huge interest for researchers over the last few decades. The artificially engineered reconstruction of these epithelial cellular barriers on microdevices could help underpin the host-microbe interaction, generating a physiological understanding of the tissue, tissue remodeling, receptor-based selective diffusion, drug testing, and others. In addition, these devices could reduce the burden of animal sacrifices for similar research and minimize the failure rate in drug discovery due to the use of primary human cells and others. This review discusses the nature of the epithelial barrier at different tissue sites, the recent developments in creating engineered barrier models, and their applications in pathophysiology, host-microbe interactions, drug discovery, and cytotoxicity. The review aims to provide know-how and knowledge behind engineered epithelial barrier tissue to bioengineers, biotechnologists, and scientists in allied fields.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Pragyan Ray
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Swagatika Barik
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Oindrila Banik
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology, Raipur-492010 Chhattisgarh, India
| | - Earu Banoth
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Prasoon Kumar
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
3
|
Königer L, Malkmus C, Mahdy D, Däullary T, Götz S, Schwarz T, Gensler M, Pallmann N, Cheufou D, Rosenwald A, Möllmann M, Groneberg D, Popp C, Groeber‐Becker F, Steinke M, Hansmann J. ReBiA-Robotic Enabled Biological Automation: 3D Epithelial Tissue Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406608. [PMID: 39324843 PMCID: PMC11615785 DOI: 10.1002/advs.202406608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Indexed: 09/27/2024]
Abstract
The Food and Drug Administration's recent decision to eliminate mandatory animal testing for drug approval marks a significant shift to alternative methods. Similarly, the European Parliament is advocating for a faster transition, reflecting public preference for animal-free research practices. In vitro tissue models are increasingly recognized as valuable tools for regulatory assessments before clinical trials, in line with the 3R principles (Replace, Reduce, Refine). Despite their potential, barriers such as the need for standardization, availability, and cost hinder their widespread adoption. To address these challenges, the Robotic Enabled Biological Automation (ReBiA) system is developed. This system uses a dual-arm robot capable of standardizing laboratory processes within a closed automated environment, translating manual processes into automated ones. This reduces the need for process-specific developments, making in vitro tissue models more consistent and cost-effective. ReBiA's performance is demonstrated through producing human reconstructed epidermis, human airway epithelial models, and human intestinal organoids. Analyses confirm that these models match the morphology and protein expression of manually prepared and native tissues, with similar cell viability. These successes highlight ReBiA's potential to lower barriers to broader adoption of in vitro tissue models, supporting a shift toward more ethical and advanced research methods.
Collapse
Affiliation(s)
- Lukas Königer
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Christoph Malkmus
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Institute of Medical Engineering SchweinfurtTechnical University of Applied Sciences Würzburg‐Schweinfurt97421SchweinfurtGermany
| | - Dalia Mahdy
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
| | - Thomas Däullary
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
- Chair of Cellular ImmunotherapyUniversity Hospital Würzburg97080WürzburgGermany
| | - Susanna Götz
- Faculty of Design WürzburgTechnical University of Applied Sciences Würzburg‐Schweinfurt97070WürzburgGermany
| | - Thomas Schwarz
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Marius Gensler
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
| | - Niklas Pallmann
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
| | - Danjouma Cheufou
- Department of Thoracic SurgeryKlinikum Würzburg Mitte97070WürzburgGermany
| | | | - Marc Möllmann
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Dieter Groneberg
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Christina Popp
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Florian Groeber‐Becker
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Department of OphthalmologyUniversity Clinic Düsseldorf40225DüsseldorfGermany
| | - Maria Steinke
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Department of Oto‐Rhino‐LaryngologyPlasticAesthetic and Reconstructive Head and Neck SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Jan Hansmann
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Institute of Medical Engineering SchweinfurtTechnical University of Applied Sciences Würzburg‐Schweinfurt97421SchweinfurtGermany
| |
Collapse
|
4
|
Mérignac-Lacombe J, Kornbausch N, Sivarajan R, Boichot V, Berg K, Oberwinkler H, Saliba AE, Loos HM, Ehret Kasemo T, Scherzad A, Bodem J, Buettner A, Neiers F, Erhard F, Hackenberg S, Heydel JM, Steinke M. Characterization of a Human Respiratory Mucosa Model to Study Odorant Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12696-12706. [PMID: 38775624 DOI: 10.1021/acs.jafc.4c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Nasal xenobiotic metabolizing enzymes (XMEs) are important for the sense of smell because they influence odorant availability and quality. Since the major part of the human nasal cavity is lined by a respiratory mucosa, we hypothesized that this tissue contributed to nasal odorant metabolism through XME activity. Thus, we built human respiratory tissue models and characterized the XME profiles using single-cell RNA sequencing. We focused on the XMEs dicarbonyl and l-xylulose reductase, aldehyde dehydrogenase (ALDH) 1A1, and ALDH3A1, which play a role in food odorant metabolism. We demonstrated protein abundance and localization in the tissue models and showed the metabolic activity of the corresponding enzyme families by exposing the models to the odorants 3,4-hexandione and benzaldehyde. Using gas chromatography coupled with mass spectrometry, we observed, for example, a significantly higher formation of the corresponding metabolites 4-hydroxy-3-hexanone (39.03 ± 1.5%, p = 0.0022), benzyl alcohol (10.05 ± 0.88%, p = 0.0008), and benzoic acid (8.49 ± 0.57%, p = 0.0004) in odorant-treated tissue models compared to untreated controls (0 ± 0, 0.12 ± 0.12, and 0.18 ± 0.18%, respectively). This is the first study that reveals the XME profile of tissue-engineered human respiratory mucosa models and demonstrates their suitability to study nasal odorant metabolism.
Collapse
Affiliation(s)
- Jeanne Mérignac-Lacombe
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Nicole Kornbausch
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Rinu Sivarajan
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Valentin Boichot
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
| | - Kevin Berg
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, 93053 Regensburg, Germany
| | - Heike Oberwinkler
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research (HZI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany
- FAU Research Center "New Bioactive Compounds", Schlossplatz 4, 91054 Erlangen, Germany
| | - Totta Ehret Kasemo
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany
- FAU Research Center "New Bioactive Compounds", Schlossplatz 4, 91054 Erlangen, Germany
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, 93053 Regensburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
| | - Maria Steinke
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Röntgenring 12, 97070 Würzburg, Germany
| |
Collapse
|
5
|
Stöth M, Mineif AT, Sauer F, Meyer TJ, Mueller-Diesing F, Haug L, Scherzad A, Steinke M, Rossi A, Hackenberg S. A Tissue Engineered 3D Model of Cancer Cell Invasion for Human Head and Neck Squamous-Cell Carcinoma. Curr Issues Mol Biol 2024; 46:4049-4062. [PMID: 38785518 PMCID: PMC11119844 DOI: 10.3390/cimb46050250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Head and neck squamous-cell carcinoma (HNSCC) is associated with aggressive local invasiveness, being a main reason for its poor prognosis. The exact mechanisms underlying the strong invasive abilities of HNSCC remain to be elucidated. Therefore, there is a need for in vitro models to study the interplay between cancer cells and normal adjacent tissue at the invasive tumor front. To generate oral mucosa tissue models (OMM), primary keratinocytes and fibroblasts from human oral mucosa were isolated and seeded onto a biological scaffold derived from porcine small intestinal submucosa with preserved mucosa. Thereafter, we tested different methods (single tumor cells, tumor cell spots, spheroids) to integrate the human cancer cell line FaDu to generate an invasive three-dimensional model of HNSCC. All models were subjected to morphological analysis by histology and immunohistochemistry. We successfully built OMM tissue models with high in vivo-in vitro correlation. The integration of FaDu cell spots and spheroids into the OMM failed. However, with the integration of single FaDu cells into the OMM, invasive tumor cell clusters developed. Between segments of regular epithelial differentiation of the OMM, these clusters showed a basal membrane penetration and lamina propria infiltration. Primary human fibroblasts and keratinocytes seeded onto a porcine carrier structure are suitable to build an OMM. The HNSCC model with integrated FaDu cells could enable subsequent investigations into cancer cell invasiveness.
Collapse
Affiliation(s)
- Manuel Stöth
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
| | - Anna Teresa Mineif
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany; (A.T.M.)
| | - Fabian Sauer
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany; (A.T.M.)
| | - Till Jasper Meyer
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
| | - Flurin Mueller-Diesing
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
| | - Lukas Haug
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
| | - Maria Steinke
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany; (A.T.M.)
- Fraunhofer Institute for Silicate Research ISC, 97082 Würzburg, Germany;
| | - Angela Rossi
- Fraunhofer Institute for Silicate Research ISC, 97082 Würzburg, Germany;
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
| |
Collapse
|
6
|
Kornbausch N, Mérignac-Lacombe J, Neiers F, Thomas-Danguin T, Heydel JM, Steinke M, Hackenberg S, Loos HM. Perspectives on Nasal Odorant Metabolism Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16488-16492. [PMID: 37877768 DOI: 10.1021/acs.jafc.3c04662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Olfaction is a multi-step process. At a peripheral level, nasal odorant metabolism contributes to olfaction via signal termination, variation, and regulation. We summarize current techniques used to investigate nasal odorant metabolism and give an outlook on future approaches, such as nasal tissue models and their potential contributions in future research directions.
Collapse
Affiliation(s)
- Nicole Kornbausch
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jeanne Mérignac-Lacombe
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Maria Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
- Fraunhofer Institute for Silicate Research (ISC), 97070 Würzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Clinic Wuerzburg, 52074 Aachen, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany
| |
Collapse
|
7
|
Fullen AR, Gutierrez-Ferman JL, Rayner RE, Kim SH, Chen P, Dubey P, Wozniak DJ, Peeples ME, Cormet-Boyaka E, Deora R. Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium. PLoS Pathog 2023; 19:e1011193. [PMID: 36821596 PMCID: PMC9990917 DOI: 10.1371/journal.ppat.1011193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Traditionally, whooping cough or pertussis caused by the obligate human pathogen Bordetella pertussis (Bp) is described as an acute disease with severe symptoms. However, many individuals who contract pertussis are either asymptomatic or show very mild symptoms and yet can serve as carriers and sources of bacterial transmission. Biofilms are an important survival mechanism for bacteria in human infections and disease. However, bacterial determinants that drive biofilm formation in humans are ill-defined. In the current study, we show that Bp infection of well-differentiated primary human bronchial epithelial cells leads to formation of bacterial aggregates, clusters, and highly structured biofilms which are colocalized with cilia. These findings mimic observations from pathological analyses of tissues from pertussis patients. Distinct arrangements (mono-, bi-, and tri-partite) of the polysaccharide Bps, extracellular DNA, and bacterial cells were visualized, suggesting complex heterogeneity in bacteria-matrix interactions. Analyses of mutant biofilms revealed positive roles in matrix production, cell cluster formation, and biofilm maturity for three critical Bp virulence factors: Bps, filamentous hemagglutinin, and adenylate cyclase toxin. Adherence assays identified Bps as a new Bp adhesin for primary human airway cells. Taken together, our results demonstrate the multi-factorial nature of the biofilm extracellular matrix and biofilm development process under conditions mimicking the human respiratory tract and highlight the importance of model systems resembling the natural host environment to investigate pathogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Audra R. Fullen
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jessica L. Gutierrez-Ferman
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Phylip Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Purnima Dubey
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Rajendar Deora
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
8
|
Baroli CM, Gorgojo JP, Blancá BM, Debandi M, Rodriguez ME. Bordetella pertussis targets the basolateral membrane of polarized respiratory epithelial cells, gets internalized, and survives in intracellular locations. Pathog Dis 2023; 81:ftad035. [PMID: 38040630 DOI: 10.1093/femspd/ftad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023] Open
Abstract
The airway epithelial barrier is a continuous highly organized cell layer that separates the exterior from the underlying mucosal tissue, preventing pathogen invasion. Several respiratory pathogens have evolved mechanisms to compromise this barrier, invade and even reside alive within the epithelium. Bordetella pertussis is a persistent pathogen that infects the human airway epithelium, causing whooping cough. Previous studies have shown that B. pertussis survives inside phagocytic and nonphagocytic cells, suggesting that there might be an intracellular stage involved in the bacterial infectious process and/or in the pathogen persistence inside the host. In this study we found evidence that B. pertussis is able to survive inside respiratory epithelial cells. According to our results, this pathogen preferentially attaches near or on top of the tight junctions in polarized human bronchial epithelial cells and disrupts these structures in an adenylate cyclase-dependent manner, exposing their basolateral membrane. We further found that the bacterial internalization is significantly higher in cells exposing this membrane compared with cells only exposing the apical membrane. Once internalized, B. pertussis mainly remains in nondegradative phagosomes with access to nutrients. Taken together, these results point at the respiratory epithelial cells as a potential niche of persistence.
Collapse
Affiliation(s)
- Carlos Manuel Baroli
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Bruno Martín Blancá
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Martina Debandi
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| |
Collapse
|