1
|
Oh BG, Yoon JY, Ju HJ. RT-RPA Assay Combined with a Lateral Flow Strip to Detect Soybean Mosaic Virus. THE PLANT PATHOLOGY JOURNAL 2024; 40:337-345. [PMID: 39117333 PMCID: PMC11309845 DOI: 10.5423/ppj.oa.02.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Soybean (Glycine max L.) is one of the most widely planted and used legumes in the world, being used for food, animal feed products, and industrial production. The soybean mosaic virus (SMV) is the most prevalent virus infecting soybean plants. This study developed a diagnostic method for the rapid and sensitive detection of SMV using a reverse transcription-recombinase polymerase amplification (RT-RPA) technique combined with a lateral flow strip (LFS). The RT-RPA and RT-RPA-LFS conditions to detect the SMV were optimized using the selected primer set that amplified part of the VPg protein gene. The optimized reaction temperature for the RT-RPA primer and RT-RPA-LFS primer used in this study was 38℃ for both, and the minimum reaction time was 10 min and 5 min, respectively. The RT-RPA-LFS was as sensitive as RT-PCR to detect SMV with 10 pg/μl of total RNA. The reliability of the developed RT-RPA-LFS assay was evaluated using leaves collected from soybean fields. The RT-RPA-LFS diagnostic method developed in this study will be useful as a diagnostic method that can quickly and precisely detect SMV in the epidemiological investigation of SMV, in the selection process of SMV-resistant varieties, on local farms with limited resources.
Collapse
Affiliation(s)
- Bong Geun Oh
- Department of Agricultural Biology, Jeonbuk National University, Jeonju 54896, Korea
| | - Ju-Yeon Yoon
- Department of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Ho-Jong Ju
- Department of Agricultural Biology, Jeonbuk National University, Jeonju 54896, Korea
- Department of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Korea
- Plant Medical Research Center, Jeonbuk National University, Jeonju 54896, Korea
- Institute of Agricultural Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
2
|
Xing Y, Duan Z, Jiang Y, Li M, Lu W, Li J. Development and evaluation of a real-time multienzyme isothermal rapid amplification assay for rapid detection of Streptococcus pneumoniae. Sci Rep 2024; 14:17729. [PMID: 39085471 PMCID: PMC11291690 DOI: 10.1038/s41598-024-68524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Streptococcus pneumoniae is a significant pathogen causing infectious diseases, including pneumonia, otitis media, septicemia, and meningitis. The introduction of multivalent vaccines has coincided with a remarkable decrease in the number of pneumococcal-related deaths. Despite this, pneumococcal infection remains a significant cause of death among children under 5 years old and adults aged 65 or older at a global level. Therefore, early detection of S. pneumoniae infection is crucial for prognosis of pneumococcal infection patients. In this study, we evaluated the utility of a real-time multienzyme isothermal rapid amplification (MIRA) assay for detecting S. pneumoniae and other non-S. pneumoniae bacterial species. A primer-probe set targeting the S. pneumoniae lytA gene was designed, followed by optimization of parameters for the MIRA assay. At the same time, we validated the real-time MIRA assay for detecting S. pneumoniae using 79 clinical isolates identified by VITEK MS. The results showed a detection sensitivity and specificity of 100%. These results demonstrate that the designed real-time MIRA assay is a promising, rapid, simple, and reliable method for detecting S. pneumoniae infection in resource-limited areas. It has great potential for application in detecting not only S. pneumoniae but also other non-S. pneumoniae bacterial species.
Collapse
Affiliation(s)
- Yun Xing
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhixiong Duan
- Department of Laboratory Medicine, The Chen Jia Qiao Hospital of Sha Ping Ba District of Chongqing City, Chongqing, China
| | - Yuansu Jiang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Weiping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China.
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China.
- Department of Laboratory Medicine, Chongqing Medical University Affiliated Dazu Hospital, Chongqing, China.
| |
Collapse
|
3
|
Almutairy B. Extensively and multidrug-resistant bacterial strains: case studies of antibiotics resistance. Front Microbiol 2024; 15:1381511. [PMID: 39027098 PMCID: PMC11256239 DOI: 10.3389/fmicb.2024.1381511] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
The development of antibiotic resistance compromises the effectiveness of our most effective defenses against bacterial infections, presenting a threat to global health. To date, a large number of research articles exist in the literature describing the case reports associated with extensively drug-resistant (XDR) and multidrug-resistant (MDR) bacterial strains. However, these findings are scattered, making it time-consuming for researchers to locate promising results and there remains a need for a comparative study to compile these case reports from various geographical regions including the Kingdom of Saudi Arabia. Additionally, no study has yet been published that compares the genetic variations and case reports of MDR and XDR strains identified from Saudi Arabia, the Middle East, Central Europe, and Asian countries. This study attempts to provide a comparative analysis of several MDR and XDR case reports from Saudi Arabia alongside other countries. Furthermore, the purpose of this work is to demonstrate the genetic variations in the genes underlying the resistance mechanisms seen in MDR and XDR bacterial strains that have been reported in Saudi Arabia and other countries. To cover the gap, this comprehensive review explores the complex trends in antibiotic resistance and the growing risk posed by superbugs. We provide context on the concerning spread of drug-resistant bacteria by analyzing the fundamental mechanisms of antibiotic resistance and looking into individual case reports. In this article, we compiled various cases and stories associated with XDR and MDR strains from Saudi Arabia and various other countries including China, Egypt, India, Poland, Pakistan, and Taiwan. This review will serve as basis for highlighting the growing threat of MDR, XDR bacterial strains in Saudi Arabia, and poses the urgent need for national action plans, stewardship programs, preventive measures, and novel antibiotics research in the Kingdom.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
4
|
Yadav PK, Singh S, Paul M, Kumar S, Ponmariappan S, Thavaselvam D. Development of a novel sequence based real-time PCR assay for specific and sensitive detection of Burkholderia pseudomallei in clinical and environmental matrices. Ann Clin Microbiol Antimicrob 2024; 23:30. [PMID: 38600514 PMCID: PMC11007888 DOI: 10.1186/s12941-024-00693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Melioidosis, caused by the category B biothreat agent Burkholderia pseudomallei, is a disease with a high mortality rate and requires an immediate culture-independent diagnosis for effective disease management. In this study, we developed a highly sensitive qPCR assay for specific detection of Burkholderia pseudomallei and melioidosis disease diagnosis based on a novel target sequence. METHODS An extensive in-silico analysis was done to identify a novel and highly conserved sequence for developing a qPCR assay. The specificity of the developed assay was analyzed with 65 different bacterial cultures, and the analytical sensitivity of the assay was determined with the purified genomic DNA of B. pseudomallei. The applicability of the assay for B. pseudomallei detection in clinical and environmental matrices was evaluated by spiking B. pseudomallei cells in the blood, urine, soil, and water along with suitable internal controls. RESULTS A novel 85-nucleotide-long sequence was identified using in-silico tools and employed for the development of the highly sensitive and specific quantitative real-time PCR assay S664. The assay S664 was found to be highly specific when evaluated with 65 different bacterial cultures related and non-related to B. pseudomallei. The assay was found to be highly sensitive, with a detection limit of 3 B. pseudomallei genome equivalent copies per qPCR reaction. The detection limit in clinical matrices was found to be 5 × 102 CFU/mL for both human blood and urine. In environmental matrices, the detection limit was found to be 5 × 101 CFU/mL of river water and 2 × 103 CFU/gm of paddy field soil. CONCLUSIONS The findings of the present study suggest that the developed assay S664 along with suitable internal controls has a huge diagnostic potential and can be successfully employed for specific, sensitive, and rapid molecular detection of B. pseudomallei in various clinical and environmental matrices.
Collapse
Affiliation(s)
- Pranjal Kumar Yadav
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Suchetna Singh
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Moumita Paul
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Sanjay Kumar
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India.
| | - S Ponmariappan
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Duraipandian Thavaselvam
- O/o DGLS, Defence Research and Development Organization, Ministry of Defence, SSPL Campus, Timarpur, New Delhi, 110 054, India.
| |
Collapse
|
5
|
Feng X, Liu Y, Zhao Y, Sun Z, Xu N, Zhao C, Xia W. Recombinase Polymerase Amplification-Based Biosensors for Rapid Zoonoses Screening. Int J Nanomedicine 2023; 18:6311-6331. [PMID: 37954459 PMCID: PMC10637217 DOI: 10.2147/ijn.s434197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
Recent, outbreaks of new emergency zoonotic diseases have prompted an urgent need to develop fast, accurate, and portable screening assays for pathogen infections. Recombinase polymerase amplification (RPA) is sensitive and specific and can be conducted at a constant low temperature with a short response time, making it especially suitable for on-site screening and making it a powerful tool for preventing or controlling the spread of zoonoses. This review summarizes the design principles of RPA-based biosensors as well as various signal output or readout technologies involved in fluorescence detection, lateral flow assays, enzymatic catalytic reactions, spectroscopic techniques, electrochemical techniques, chemiluminescence, nanopore sequencing technologies, microfluidic digital RPA, and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems. The current status and prospects of the application of RPA-based biosensors in zoonoses screening are highlighted. RPA-based biosensors demonstrate the advantages of rapid response, easy-to-read result output, and easy implementation for on-site detection, enabling development toward greater portability, automation, and miniaturization. Although there are still problems such as high cost with unstable signal output, RPA-based biosensors are increasingly becoming one of the most important means of on-site pathogen screening in complex samples involving environmental, water, food, animal, and human samples for controlling the spread of zoonotic diseases.
Collapse
Affiliation(s)
- Xinrui Feng
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- Medical College, Yanbian University, Yanji, 136200, People’s Republic of China
| | - Yan Liu
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Yang Zhao
- Department of Emergency and Intensive Medicine, No. 965 Hospital of PLA Joint Logistic Support Force, Jilin, 132013, People’s Republic of China
| | - Zhe Sun
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Chen Zhao
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Wei Xia
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| |
Collapse
|
6
|
Daddy Gaoh S, Kweon O, Ahn Y. Propidium Monoazide (PMAxx)-Recombinase Polymerase Amplification Exo (RPA Exo) Assay for Rapid Detection of Burkholderia cepacia Complex in Chlorhexidine Gluconate (CHX) and Benzalkonium Chloride (BZK) Solutions. Microorganisms 2023; 11:1401. [PMID: 37374904 DOI: 10.3390/microorganisms11061401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Both sterile and non-sterile pharmaceutical products, which include antiseptics, have been recalled due to Burkholderia cepacia complex (BCC) contamination. Therefore, minimizing the frequency of outbreaks may be conducive to the development of a quick and sensitive approach that can distinguish between live and dead loads of BCC. We have assessed an exo probe-based recombinase polymerase amplification (RPA) with 10 µM propidium monoazide (PMAxx) for selective detection of live/dead BCC cells in various concentrations of antiseptics (i.e., chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) solutions) after 24 h. The optimized assay conducted using a set of primer-probes targeting gbpT was performed at 40 °C for 20 min and shows a detection limit of 10 pg/µL of genomic DNA from B. cenocepacia J2315, equivalent to 104 colony-forming units (CFU/mL). The specificity of a newly designed primer and probe was 80% (20 negatives out of 25). The readings for total cells (i.e., without PMAxx) from 200 µg/mL CHX using PMAxx-RPA exo assay was 310 relative fluorescence units (RFU), compared to 129 RFU with PMAxx (i.e., live cells). Furthermore, in 50-500 µg/mL BZK-treated cells, a difference in the detection rate was observed between the PMAxx-RPA exo assay in live cells (130.4-459.3 RFU) and total cells (207.82-684.5 RFU). This study shows that the PMAxx-RPA exo assay appears to be a valid tool for the simple, rapid and presumptive detection of live BCC cells in antiseptics, thereby ensuring the quality and safety of pharmaceutical products.
Collapse
Affiliation(s)
- Soumana Daddy Gaoh
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
7
|
Hu WW, He JW, Guo SL, Li J. Development and evaluation of a rapid and sensitive multienzyme isothermal rapid amplification with a lateral flow dipstick assay for detection of Acinetobacter baumannii in spiked blood specimens. Front Cell Infect Microbiol 2022; 12:1010201. [PMID: 36339332 PMCID: PMC9626983 DOI: 10.3389/fcimb.2022.1010201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose This study aimed to establish the multienzyme isothermal rapid amplification with a lateral flow dipstick (MIRA-LFD) assay and evaluate its performance in detection of A. baumannii in spiked blood specimens. Methods The study was divided into two stages: a pilot study to establish the methodology and a clinical validation study to evaluate its performance. In the first step, we designed primers specific to detect A. baumannii, optimized the MIRA-LFD assay and analyzed its performance regarding limits of detection, reproducibility, specificity, and efficiency of detection using real-time PCR method. In the second step, we obtained 50 spiked blood isolates and detected these pathogens by MIRA-LFD assay. The MIRA-LFD time was 15 min from DNA sample amplification to complete pathogen detection. Results The developed MIRA-LFD assay displayed a detection limit of 6 CFU/mL for detecting A. baumannii, which was significantly better than that of real-time PCR method, and no cross-reactivity was observed in other non-A. baumannii studied. The results obtained with 50 spiked blood isolates suggested that the developed MIRA-LFD assay had high specificity and sensitivity for identifying A. baumannii. Conclusions This study demonstrates that the established MIRA-LFD assay is time-saving, more effective and sensitive, which may become a powerful tool for rapid and reliable diagnosis of bloodstream infection caused by A. baumannii in primary hospitals.
Collapse
Affiliation(s)
- Wei-Wei Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Wei He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shu-Liang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jin Li, ; Shu-Liang Guo,
| | - Jin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Jin Li, ; Shu-Liang Guo,
| |
Collapse
|
8
|
Wongpalee SP, Thananchai H, Chewapreecha C, Roslund HB, Chomkatekaew C, Tananupak W, Boonklang P, Pakdeerat S, Seng R, Chantratita N, Takarn P, Khamnoi P. Highly specific and sensitive detection of Burkholderia pseudomallei genomic DNA by CRISPR-Cas12a. PLoS Negl Trop Dis 2022; 16:e0010659. [PMID: 36037185 PMCID: PMC9423629 DOI: 10.1371/journal.pntd.0010659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Detection of Burkholderia pseudomallei, a causative bacterium for melioidosis, remains a challenging undertaking due to long assay time, laboratory requirements, and the lack of specificity and sensitivity of many current assays. In this study, we are presenting a novel method that circumvents those issues by utilizing CRISPR-Cas12a coupled with isothermal amplification to identify B. pseudomallei DNA from clinical isolates. Through in silico search for conserved CRISPR-Cas12a target sites, we engineered the CRISPR-Cas12a to contain a highly specific spacer to B. pseudomallei, named crBP34. The crBP34-based detection assay can detect as few as 40 copies of B. pseudomallei genomic DNA while discriminating against other tested common pathogens. When coupled with a lateral flow dipstick, the assay readout can be simply performed without the loss of sensitivity and does not require expensive equipment. This crBP34-based detection assay provides high sensitivity, specificity and simple detection method for B. pseudomallei DNA. Direct use of this assay on clinical samples may require further optimization as these samples are complexed with high level of human DNA. Melioidosis is a fatal infectious disease caused by a Gram-negative bacterium called Burkholderia pseudomallei. The bacteria can be found in many parts of the world, especially in the tropical and subtropical regions. Infection displays a variety of symptoms such as pneumonia, organ abscess and septicemia. The latter can lead to death within 24–48 hours if not properly diagnosed and treated. Rapid and accurate diagnosis, consequently, are essential for saving patients’ lives. Currently, culturing B. pseudomallei is a gold standard diagnostic method, but the assay turnaround time is 2–4 days, and the result could be of low sensitivity. Other detection methods such as real-time PCR and serological assays are limited by availability of equipment and by low specificity in endemic areas, respectively. For these reasons, in this study we developed a specific, sensitive and rapid detection assay for B. pseudomallei DNA, that is based on CRISPR-Cas12a system. The CRISPR-Cas12a is a protein-RNA complex that recognizes DNA. The RNA can be reprogramed to guide the detection of any DNA of interest, which in our case B. pseudomallei genomic DNA. Our data showed that this assay exhibited a 100% specificity to B. pseudomallei while discriminating against 10 other pathogens and human. The assay can detect B. pseudomallei DNA in less than one hour and does not require sophisticated equipment.
Collapse
Affiliation(s)
- Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| | - Hathairat Thananchai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Claire Chewapreecha
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Henrik B. Roslund
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chalita Chomkatekaew
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Warunya Tananupak
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phumrapee Boonklang
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sukritpong Pakdeerat
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piyawan Takarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phadungkiat Khamnoi
- Microbiology Unit, Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand
| |
Collapse
|
9
|
Daddy Gaoh S, Williams A, Le D, Kweon O, Alusta P, Buzatu DA, Ahn Y. Specific Detection and Enumeration of Burkholderia cepacia Complex by Flow Cytometry Using a Fluorescence-Labeled Oligonucleotide Probe. Microorganisms 2022; 10:1170. [PMID: 35744688 PMCID: PMC9227203 DOI: 10.3390/microorganisms10061170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Burkholderia cepacia complex (BCC) contamination has resulted in recalls of non-sterile pharmaceutical products. The fast, sensitive, and specific detection of BCC is critical for ensuring the quality and safety of pharmaceutical products. In this study, a rapid flow cytometry-based detection method was developed using a fluorescence-labeled oligonucleotide Kef probe that specifically binds a KefB/KefC membrane protein sequence within BCC. Optimal conditions of a 1 nM Kef probe concentration at a 60 °C hybridization temperature for 30 min were determined and applied for the flow cytometry assay. The true-positive rate (sensitivity) and true-negative rate (specificity) of the Kef probe assay were 90% (18 positive out of 20 BCC species) and 88.9% (16 negative out of 18 non-BCC), respectively. The detection limit for B. cenocepacia AU1054 with the Kef probe flow cytometry assay in nuclease-free water was 1 CFU/mL. The average cell counts using the Kef probe assay from a concentration of 10 μg/mL chlorhexidine gluconate and 50 μg/mL benzalkonium chloride were similar to those of the RAPID-B total plate count (TPC). We demonstrate the potential of Kef probe flow cytometry as a more sensitive alternative to culture-based methods for detecting BCC in non-sterilized pharmaceutical raw materials and products with regards to water-based environments.
Collapse
Affiliation(s)
- Soumana Daddy Gaoh
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.D.G.); (D.L.); (O.K.)
| | - Anna Williams
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (A.W.); (P.A.); (D.A.B.)
| | - David Le
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.D.G.); (D.L.); (O.K.)
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.D.G.); (D.L.); (O.K.)
| | - Pierre Alusta
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (A.W.); (P.A.); (D.A.B.)
| | - Dan A. Buzatu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (A.W.); (P.A.); (D.A.B.)
| | - Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.D.G.); (D.L.); (O.K.)
| |
Collapse
|