1
|
Fang F, Li G, Li X, Wu J, Liu Y, Xin H, Wang Z, Fang J, Jiang Y, Qian W, Hou X, Song J. Piezo1 regulates colon stem cells to maintain epithelial homeostasis through SCD1-Wnt-β-catenin and programming fatty acid metabolism. Cell Rep 2025; 44:115400. [PMID: 40080500 DOI: 10.1016/j.celrep.2025.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/05/2025] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
Piezo1, which maintains the integrity and function of the intestinal epithelial barrier, is essential for colonic epithelial homeostasis. However, whether and how Piezo1 regulates colon stem cell fate remains unclear. Here, we show that Piezo1 inhibition promotes colon stem cell proliferation. Mechanistically, stearoyl-CoA 9-desaturase 1 (SCD1) is downstream of Piezo1 to affect colon stem cell stemness by acting on the Wnt-β-catenin pathway. For mice, the altered colon stem cell stemness after Piezo1 knockdown and activation was accompanied by a reprogrammed fatty acid (FA) metabolism in colon crypts. Notably, we found that GsMTX4 protects injured colon stem cell stemness in mouse and human colitis organoids. Our results elucidated the role of Piezo1 in regulating normal and postinjury colon stem cell fates through SCD1-Wnt-β-catenin and the SCD1-mediated FA desaturation process. These results provide fresh perspectives on the mechanical factors regulating colon stem cell fate and therapeutic strategies for related intestinal diseases.
Collapse
Affiliation(s)
- Feifei Fang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gangping Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyan Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiandi Wu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haoren Xin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianhua Fang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yudong Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Bautista GM, Du Y, Matthews MJ, Flores AM, Kushnir NR, Sweeney NK, Nguyen NPN, Tokhtaeva E, Solorzano-Vargas RS, Lewis M, Stelzner M, He X, Dunn JCY, Martin MG. Smooth muscle cell Piezo1 depletion results in impaired contractile properties in murine small bowel. Commun Biol 2025; 8:448. [PMID: 40097724 PMCID: PMC11914552 DOI: 10.1038/s42003-025-07697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Piezo1 is a mechanosensitive cation channel expressed in intestinal muscularis cells (IMCs), including smooth muscle cells (SMCs), interstitial cells of Cajal, and Pdgfrα+ cells, which form the SIP syncytium, crucial for GI contractility. Here, we investigate the effects of SMC-specific Piezo1 deletion on small bowel function. Piezo1 depletion results in weight loss, delayed GI transit, muscularis thinning, and decreased SMCs. Ex vivo analyses demonstrated impaired contractile strength and tone, while in vitro studies using IMC co-cultures show dysrhythmic Ca2+ flux with decreased frequency. Imaging reveal that Piezo1 localizes intracellularly, thereby likely impacting Ca2+ signaling mechanisms modulated by Ca2 + -handling channels located on the sarcoplasmic reticulum and plasma membrane. Our findings suggest that Piezo1 in small bowel SMCs contributes to contractility by maintaining intracellular Ca2+ activity and subsequent signaling within the SIP syncytium. These findings provide new insights into the complex role of Piezo1 in small bowel SMCs and its implications for GI motility.
Collapse
Affiliation(s)
- Geoanna M Bautista
- Department of Pediatrics, Division of Neonatology, University of California Davis Children's Hospital, Sacramento, CA, 95817, USA
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yingjie Du
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael J Matthews
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Allison M Flores
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Nicole R Kushnir
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Nicolle K Sweeney
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Nam Phuong N Nguyen
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Elmira Tokhtaeva
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - R S Solorzano-Vargas
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Michael Lewis
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Matthias Stelzner
- Department of Surgery, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James C Y Dunn
- Division of Pediatric Surgery, Departments of Surgery and Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Xu C, Xu H, Dai X, Gui S, Chen J. Effects and mechanism of combination of Platycodon grandiflorum polysaccharides and Platycodon saponins in the treatment of chronic obstructive pulmonary disease rats through the gut-lung axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119305. [PMID: 39736349 DOI: 10.1016/j.jep.2024.119305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodon grandiflorum (Jacq.) A. DC. (PG), a traditional Chinese medicine that has pharmaceutical and edible value, widely used to alleviate symptoms such as cough, sputum, sore throat, and respiratory diseases in clinical practice. The small molecular compounds, Platycodon saponins (PGS), and the macromolecular Platycodon grandiflorum polysaccharides (PGP) commonly coexist in the decoctions and leaching solutions of PG. However, the therapeutic effect of combination of PGP and PGS in ameliorating lung damage in chronic obstructive pulmonary disease (COPD) remains largely unexplored. AIM OF THE STUDY The objective of our study was to confirm the synergistic effect of PGP and PGS on the treatment of COPD rats, further examining the associated mechanisms pertaining to the gut-lung axis and microbial metabolism. METHODS In a COPD rat model induced by cigarette smoke and sawdust, efficacy was assessed through various assays encompassing lung index and histomorphology of the colon, small intestine, and lungs. The number of white blood cells in BALF was quantified using Swiss-Giemsa staining to investigate inflammatory cells infiltration in the lungs. Techniques such as immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay, and western blotting were performed to evaluate the relevant expression of proteins in lung and intestine tissues. This aided in unveiling the protective mechanisms of co-administration of PGP and PGS in COPD rats. Additionally, bacterial genomic DNA was isolated and sequenced for intestinal microbiota analysis. Lastly, an in vitro anaerobic culture system was developed to co-incubate PGP and PGS with the objective of exploring the metabolic mechanisms mediated by gut microorganisms. RESULTS Our findings indicated that co-administration of PGP and PGS significantly mitigated the infiltration of inflammatory cells and suppressed the lung damage phenotypes in COPD rats, as evidenced by reductions in Hyp, NO, MUC2, and Ly6G. Furthermore, the combination of PGP and PGS notably ameliorated intestinal barrier damage by elevating the expression of MUC2, ZO-1, and ki67, while diminishing inflammatory markers such as CCL20, IFN-γ, and TNF-α. Remarkably, PGP amplified the protective efficacy of PGS against lung inflammatory damage by modulating the mucosal immune interaction between lung and small intestine, reducing intestinal mucosa permeability, and inhibiting the activation of microbial LPS-induced TLR4/NF-κB signaling pathways. Microbiome assays further revealed that PGP combined with PGS displayed the reversal change of gut microbiota in the COPD model. HPLC analysis of PGS and its transformation products in an anaerobic culture system showed that PGP effectively enhanced the microbial metabolism of Platycodin D and Platycodin D3 in vitro. CONCLUSIONS The synergistic combination of PGP and PGS might alleviate the pulmonary inflammation by mending intestinal barrier damage, modulating the co-immune mechanism of gut-lung axis in COPD rats, and fostering gut microbiota-mediated biotransformation. This innovative approach will contribute to an enhanced understanding of the intricate interactions within the multi-component system characteristic of traditional Chinese medicines. Consequently, it enriches our comprehension of the role of P. grandiflorus in human health care.
Collapse
Affiliation(s)
- Cong Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Huiling Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xinyue Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
| | - Juan Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China.
| |
Collapse
|
4
|
Jiang Q, Li Z, Dang D, Wei J, Wu H. Role of mechanosensitive channel Piezo1 protein in intestinal inflammation regulation: A potential target. FASEB J 2024; 38:e70122. [PMID: 39425504 PMCID: PMC11580726 DOI: 10.1096/fj.202401323r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The intestine is a hollow tract that primarily transports and digests food. It often encounters mechanical forces and exotic threats, resulting in increased intestinal inflammation attributed to the consistent threat of foreign pathogens. Piezo1, a mechanosensitive ion channel, is distributed broadly and abundantly in the intestinal tissue. It transduces mechanical signals into electrochemical signals and participates in many critical life activities, such as proliferation, differentiation, cell apoptosis, immune cell activation, and migration. Its effect on inflammation has been discussed in detail in systems, such as musculoskeletal (osteoarthritis) and cardiac (myocarditis), but the effects on intestinal inflammation remain unelucidated. Piezo1 regulates mucosal layer and epithelial barrier homeostasis during the complex intestinal handling of foreign antigens and tissue trauma. It initiates and spreads immune responses and causes distant effects of inflammation in the vascular and lymphatic systems, but reports of the effects of Piezo1 in intestinal inflammation are scarce. Therefore, this study aimed to discuss the role of Piezo1 in intestinal inflammation and explore novel therapeutic targets.
Collapse
Affiliation(s)
- Qinlei Jiang
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Zhenyu Li
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Dan Dang
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Jiaqi Wei
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Hui Wu
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| |
Collapse
|
5
|
Calvigioni M, Mazzantini D, Celandroni F, Vozzi G, Ghelardi E. Cultivating complexity: Advancements in establishing in vitro models for the mucus-adhering gut microbiota. Microb Biotechnol 2024; 17:e70036. [PMID: 39435730 PMCID: PMC11494453 DOI: 10.1111/1751-7915.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
A healthy mucus is essential for maintaining intestinal homeostasis and overall well-being. In recent years, extensive research focused on understanding the intricate interactions between mucus and the gut microbiota. Mucus-adhering bacteria play crucial roles in preserving barrier integrity, epithelial permeability and mucus architecture, as well as in the colonization resistance against pathogens. Unravelling the significance of these microorganisms in human health and disease is challenging, primarily because most of the studies on the human gut microbiota rely on faecal samples, which do not fully represent the microecological complexity found in the intestinal mucosa. This review discusses novel strategies to specifically target and evaluate the mucosal microbiota, such as culturomics applied to mucosal biopsies or brushings, intestinal organoids and artificial in vitro models incorporating mucus.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Giovanni Vozzi
- Department of Information BioengineeringUniversity of PisaPisaItaly
- Research Center Enrico PiaggioUniversity of PisaPisaItaly
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
- Research Center Nutraceuticals and Food for Health – NutrafoodUniversity of PisaPisaItaly
| |
Collapse
|
6
|
Zhao F, Li M, Luo M, Zhang M, Yuan Y, Niu H, Yue T. The dose-dependent mechanism behind the protective effect of lentinan against acute alcoholic liver injury via proliferating intestinal probiotics. Food Funct 2024; 15:10067-10087. [PMID: 39291630 DOI: 10.1039/d4fo02256d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Acute alcoholic liver injury (AALI) is a widespread disease that can develop into hepatitis, liver fibrosis, and cirrhosis. In severe cases, it can be life-threatening, while drug treatment presents various side effects. This study characterized the structure of natural lentinan (LNT) from the Qinba Mountain area and investigated the protective mechanism of different LNT doses (100 mg kg-1, 200 mg kg-1, and 400 mg kg-1) on AALI. The results showed that LNT was a glucose-dominated pyran polysaccharide with a triple-helical structure and a molecular weight (Mw) of 7.56 × 106 Da. An AALI mouse model showed that all the LNT doses protected liver function, reduced hepatic steatosis, alleviated oxidative stress and inflammatory response, and stimulated probiotic proliferation. Low-dose LNT increased anti-oxidant-associated beneficial bacteria, medium-dose LNT improved liver swelling and promoted anti-oxidant-associated probiotics, and high-dose LNT increased the probiotics that helped protect liver function and anti-oxidant and anti-inflammatory properties. All the LNT doses inhibited pathogenic growth, including Oscillospiraceae, Weeksellaceae, Streptococcaceae, Akkermansiaceae, Morganellaceae, and Proteus. These results indicated that the protective effect of LNT against AALI was mediated by the proliferation of various intestinal probiotics and was related to the consumption doses. These findings offer new strategies for comprehensively utilizing Lentinula edodes from the Qinba Mountain area and preventing AALI using natural food-based substances.
Collapse
Affiliation(s)
- Fangjia Zhao
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Min Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Mingyue Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Meng Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Haili Niu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
7
|
Guo J, Li L, Chen F, Fu M, Cheng C, Wang M, Hu J, Pei L, Sun J. Forces Bless You: Mechanosensitive Piezo Channels in Gastrointestinal Physiology and Pathology. Biomolecules 2024; 14:804. [PMID: 39062518 PMCID: PMC11274378 DOI: 10.3390/biom14070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The gastrointestinal (GI) tract is an organ actively involved in mechanical processes, where it detects forces via a mechanosensation mechanism. Mechanosensation relies on specialized cells termed mechanoreceptors, which convert mechanical forces into electrochemical signals via mechanosensors. The mechanosensitive Piezo1 and Piezo2 are widely expressed in various mechanosensitive cells that respond to GI mechanical forces by altering transmembrane ionic currents, such as epithelial cells, enterochromaffin cells, and intrinsic and extrinsic enteric neurons. This review highlights recent research advances on mechanosensitive Piezo channels in GI physiology and pathology. Specifically, the latest insights on the role of Piezo channels in the intestinal barrier, GI motility, and intestinal mechanosensation are summarized. Additionally, an overview of Piezo channels in the pathogenesis of GI disorders, including irritable bowel syndrome, inflammatory bowel disease, and GI cancers, is provided. Overall, the presence of mechanosensitive Piezo channels offers a promising new perspective for the treatment of various GI disorders.
Collapse
Affiliation(s)
- Jing Guo
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Li Li
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Feiyi Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Minhan Fu
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Cheng Cheng
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Meizi Wang
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Jun Hu
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| |
Collapse
|
8
|
He H, Zhou J, Xu X, Zhou P, Zhong H, Liu M. Piezo channels in the intestinal tract. Front Physiol 2024; 15:1356317. [PMID: 38379701 PMCID: PMC10877011 DOI: 10.3389/fphys.2024.1356317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The intestine is the largest mechanosensitive organ in the human body whose epithelial cells, smooth muscle cells, neurons and enteroendocrine cells must sense and respond to various mechanical stimuli such as motility, distension, stretch and shear to regulate physiological processes including digestion, absorption, secretion, motility and immunity. Piezo channels are a newly discovered class of mechanosensitive ion channels consisting of two subtypes, Piezo1 and Piezo2. Piezo channels are widely expressed in the intestine and are involved in physiological and pathological processes. The present review summarizes the current research progress on the expression, function and regulation of Piezo channels in the intestine, with the aim of providing a reference for the future development of therapeutic strategies targeting Piezo channels.
Collapse
Affiliation(s)
- Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuan Xu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pinxi Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huan Zhong
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
9
|
Zhou R, Wu Q, Yang Z, Cai Y, Wang D, Wu D. The Role of the Gut Microbiome in the Development of Acute Pancreatitis. Int J Mol Sci 2024; 25:1159. [PMID: 38256232 PMCID: PMC10816839 DOI: 10.3390/ijms25021159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
With the explosion research on the gut microbiome in the recent years, much insight has been accumulated in comprehending the crosstalk between the gut microbiota community and host health. Acute pancreatitis (AP) is one of the gastrointestinal diseases associated with significant morbidity and subsequent mortality. Studies have elucidated that gut microbiota are engaged in the pathological process of AP. Herein, we summarize the major roles of the gut microbiome in the development of AP. We then portray the association between dysbiosis of the gut microbiota and the severity of AP. Finally, we illustrate the promises and challenges that arise when seeking to incorporate the microbiome in acute pancreatitis treatment.
Collapse
Affiliation(s)
- Ruilin Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
| | - Qingyang Wu
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Q.W.); (D.W.)
| | - Zihan Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
| | - Yanna Cai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
| | - Duan Wang
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Q.W.); (D.W.)
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
12
|
Fang F, Liu Y, Xiong Y, Li X, Li G, Jiang Y, Hou X, Song J. Slowed Intestinal Transit Induced by Less Mucus in Intestinal Goblet Cell Piezo1-Deficient Mice through Impaired Epithelial Homeostasis. Int J Mol Sci 2023; 24:14377. [PMID: 37762681 PMCID: PMC10531822 DOI: 10.3390/ijms241814377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Mucus secreted by goblet cells (GCs) may play an important role in intestinal transit function. Our previous study found that Piezo1 protein is essential for GC function; however, the effect of GC Piezo1 on intestinal transit function is unclear. Our study aimed to investigate the effect of Piezo1 in GCs on intestinal transit and the potential mechanism. We compared intestinal mucus, fecal form, intestinal transit time, intestinal epithelial cell composition, and stem cell function in WT and GC-specific Piezo1-deficient (Piezo1ΔGC) mice. Our results revealed a correlation between mucus and intestinal transit: the less mucus there was, the slower the intestinal transit. Piezo1 deficiency in GCs led to decreased mucus synthesis and also disrupted the ecological niche of colon stem cells (CSCs). Through organoid culture, we found that the capacity of proliferation and differentiation in Piezo1ΔGC mouse CSCs was significantly decreased, which also led to a reduced source of GCs. Further studies found that the reduced Wnt and Notch signals in colon crypts might be the potential mechanism. These results indicated the importance of GC Piezo1 in intestinal transit function, which acts by maintaining the homeostasis of intestinal epithelial cells and mucus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.F.); (Y.L.); (Y.X.); (X.L.); (G.L.); (Y.J.); (X.H.)
| |
Collapse
|
13
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1’s cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|