1
|
Samodova D, Stankevic E, Søndergaard MS, Hu N, Ahluwalia TS, Witte DR, Belstrøm D, Lubberding AF, Jagtap PD, Hansen T, Deshmukh AS. Salivary proteomics and metaproteomics identifies distinct molecular and taxonomic signatures of type-2 diabetes. MICROBIOME 2025; 13:5. [PMID: 39794871 PMCID: PMC11720885 DOI: 10.1186/s40168-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Saliva is a protein-rich body fluid for noninvasive discovery of biomolecules, containing both human and microbial components, associated with various chronic diseases. Type-2 diabetes (T2D) imposes a significant health and socio-economic burden. Prior research on T2D salivary microbiome utilized methods such as metagenomics, metatranscriptomics, 16S rRNA sequencing, and low-throughput proteomics. RESULTS We conducted ultrafast, in-depth MS-based proteomic and metaproteomic profiling of saliva from 15 newly diagnosed T2D individuals and 15 age-/BMI-matched healthy controls (HC). Using state-of-the-art proteomics, over 4500 human and bacterial proteins were identified in a single 21-min run. Bioinformatic analysis revealed host signatures of altered immune-, lipid-, and glucose-metabolism regulatory systems, increased oxidative stress, and possible precancerous changes in T2D saliva. Abundance of peptides for bacterial genera such as Neisseria and Corynebacterium were altered showing biomarker potential, offering insights into disease pathophysiology and microbial applications for T2D management. CONCLUSIONS This study presents a comprehensive mapping of salivary proteins and microbial communities, serving as a foundational resource for enhancing understanding of T2D pathophysiology. The identified biomarkers hold promise for advancing diagnostics and therapeutic approaches in T2D and its associated long-term complication Video Abstract.
Collapse
Affiliation(s)
- Diana Samodova
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Evelina Stankevic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | | | - Naiyu Hu
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, Herlev, 2730, Denmark
- Department of Biology, The Bioinformatics Center, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Bartholins Allé 2, Building 1260, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 11, Entrance A, Aarhus, 8200, Denmark
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, University of Copenhagen, Nørre Allé 20, Copenhagen, 2200, Denmark
| | | | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 420 Washington Ave SE, Minneapolis, MN, 55455, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
| |
Collapse
|
2
|
Murray PE, Coffman JA, Garcia-Godoy F. Oral Pathogens' Substantial Burden on Cancer, Cardiovascular Diseases, Alzheimer's, Diabetes, and Other Systemic Diseases: A Public Health Crisis-A Comprehensive Review. Pathogens 2024; 13:1084. [PMID: 39770344 PMCID: PMC11677847 DOI: 10.3390/pathogens13121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
This review synthesizes the findings from 252 studies to explore the relationship between the oral pathogens associated with periodontitis, dental caries, and systemic diseases. Individuals with oral diseases, such as periodontitis, are between 1.7 and 7.5 times (average 3.3 times) more likely to develop systemic diseases or suffer adverse pregnancy outcomes, underscoring the critical connection between dental and overall health. Oral conditions such as periodontitis and dental caries represent a significant health burden, affecting 26-47% of Americans. The most important oral pathogens, ranked by publication frequency, include the herpes virus, C. albicans, S. mutans, P. gingivalis, F. nucleatum, A. actinomycetemcomitans, P. intermedia, T. denticola, and T. forsythia. The systemic diseases and disorders linked to oral infections, ranked similarly, include cancer, respiratory, liver, bowel, fever, kidney, complications in pregnancy, cardiovascular bacteremia, diabetes, arthritis, autoimmune, bladder, dementia, lupus, and Alzheimer's diseases. Evidence supports the efficacy of dental and periodontal treatments in eliminating oral infections and reducing the severity of systemic diseases. The substantial burden that oral pathogens have on cancer, cardiovascular diseases, Alzheimer's, diabetes, and other systemic diseases poses a significant public health crisis.
Collapse
Affiliation(s)
| | - Jonathan A Coffman
- College of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Franklin Garcia-Godoy
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Stankevic E, Kern T, Borisevich D, Poulsen CS, Madsen AL, Hansen TH, Jonsson A, Schubert M, Nygaard N, Nielsen T, Belstrøm D, Ahluwalia TS, Witte DR, Grarup N, Arumugam M, Pedersen O, Hansen T. Genome-wide association study identifies host genetic variants influencing oral microbiota diversity and metabolic health. Sci Rep 2024; 14:14738. [PMID: 38926497 PMCID: PMC11208528 DOI: 10.1038/s41598-024-65538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
The microbial communities of the oral cavity are important elements of oral and systemic health. With emerging evidence highlighting the heritability of oral bacterial microbiota, this study aimed to identify host genome variants that influence oral microbial traits. Using data from 16S rRNA gene amplicon sequencing, we performed genome-wide association studies with univariate and multivariate traits of the salivary microbiota from 610 unrelated adults from the Danish ADDITION-PRO cohort. We identified six single nucleotide polymorphisms (SNPs) in human genomes that showed associations with abundance of bacterial taxa at different taxonomical tiers (P < 5 × 10-8). Notably, SNP rs17793860 surpassed our study-wide significance threshold (P < 1.19 × 10-9). Additionally, rs4530093 was linked to bacterial beta diversity (P < 5 × 10-8). Out of these seven SNPs identified, six exerted effects on metabolic traits, including glycated hemoglobin A1c, triglyceride and high-density lipoprotein cholesterol levels, the risk of type 2 diabetes and stroke. Our findings highlight the impact of specific host SNPs on the composition and diversity of the oral bacterial community. Importantly, our results indicate an intricate interplay between host genetics, the oral microbiota, and metabolic health. We emphasize the need for integrative approaches considering genetic, microbial, and metabolic factors.
Collapse
Affiliation(s)
- Evelina Stankevic
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo Kern
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmitrii Borisevich
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Casper Sahl Poulsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Lundager Madsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tue Haldor Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Medical Department, Zealand University Hospital, Koege, Denmark
| | - Anna Jonsson
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikoline Nygaard
- Department of Odontology, Section for Clinical Oral Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Medical Department, Zealand University Hospital, Koege, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Belstrøm
- Department of Odontology, Section for Clinical Oral Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Herlev-Gentofte University Hospital, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Senaratne NLM, Yung on C, Shetty NY, Gopinath D. Effect of different forms of tobacco on the oral microbiome in healthy adults: a systematic review. FRONTIERS IN ORAL HEALTH 2024; 5:1310334. [PMID: 38445094 PMCID: PMC10912582 DOI: 10.3389/froh.2024.1310334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024] Open
Abstract
Objective The study aimed to evaluate the impact of tobacco use on the composition and functions of the oral microbiome in healthy adult humans. Methods We conducted a systematic search on PubMed, Web of Science, and Cinhal databases for literature published until 15 December 2023, to identify studies that have evaluated the oral microbiome with culture-independent next-generation techniques comparing the oral microbiome of tobacco users and non-users. The search followed the PECO format. The outcomes included changes in microbial diversity and abundance of microbial taxa. The quality assessment was performed using the Newcastle-Ottawa Scale (NOS) (PROSPERO ID CRD42022340151). Results Out of 2,435 articles screened, 36 articles satisfied the eligibility criteria and were selected for full-text review. Despite differences in design, quality, and population characteristics, most studies reported an increase in bacterial diversity and richness in tobacco users. The most notable bacterial taxa enriched in users were Fusobacteria and Actinobacteria at the phylum level and Streptococcus, Prevotella, and Veillonella at the genus level. At the functional level, more similarities could be noted; amino acid metabolism and xenobiotic biodegradation pathways were increased in tobacco users compared to non-users. Most of the studies were of good quality on the NOS scale. Conclusion Tobacco smoking influences oral microbial community harmony, and it shows a definitive shift towards a proinflammatory milieu. Heterogeneities were detected due to sampling and other methodological differences, emphasizing the need for greater quality research using standardized methods and reporting. Systematic Review Registration CRD42022340151.
Collapse
Affiliation(s)
- Nikitha Lalindri Mareena Senaratne
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Cheng Yung on
- Sungai Rengit Dental Clinic, Johor Health Department, Ministry of Health Malaysia, Kota Tinggi, Malaysia
| | - Naresh Yedthare Shetty
- Clinical Sciences Department, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Divya Gopinath
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Basic Medical and Dental Sciences Department, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
5
|
Antonello G, Blostein F, Bhaumik D, Davis E, Gögele M, Melotti R, Pramstaller P, Pattaro C, Segata N, Foxman B, Fuchsberger C. Smoking and salivary microbiota: a cross-sectional analysis of an Italian alpine population. Sci Rep 2023; 13:18904. [PMID: 37919319 PMCID: PMC10622503 DOI: 10.1038/s41598-023-42474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
The oral microbiota plays an important role in the exogenous nitrate reduction pathway and is associated with heart and periodontal disease and cigarette smoking. We describe smoking-related changes in oral microbiota composition and resulting potential metabolic pathway changes that may explain smoking-related changes in disease risk. We analyzed health information and salivary microbiota composition among 1601 Cooperative Health Research in South Tyrol participants collected 2017-2018. Salivary microbiota taxa were assigned from amplicon sequences of the 16S-V4 rRNA and used to describe microbiota composition and predict metabolic pathways. Aerobic taxa relative abundance decreased with daily smoking intensity and increased with years since cessation, as did inferred nitrate reduction. Former smokers tended to be more similar to Never smokers than to Current smokers, especially those who had quit for longer than 5 years. Cigarette smoking has a consistent, generalizable association on oral microbiota composition and predicted metabolic pathways, some of which associate in a dose-dependent fashion. Smokers who quit for longer than 5 years tend to have salivary microbiota profiles comparable to never smokers.
Collapse
Affiliation(s)
- Giacomo Antonello
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy.
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Freida Blostein
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Deesha Bhaumik
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Elyse Davis
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Martin Gögele
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Roberto Melotti
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter Pramstaller
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Cristian Pattaro
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Betsy Foxman
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
6
|
Shen MT, Shahin B, Chen Z, Adami GR. Unexpected lower level of oral periodontal pathogens in patients with high numbers of systemic diseases. PeerJ 2023; 11:e15502. [PMID: 37465146 PMCID: PMC10351517 DOI: 10.7717/peerj.15502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/14/2023] [Indexed: 07/20/2023] Open
Abstract
Background Periodontal disease is associated with systemic conditions such as diabetes, arthritis, and cardiovascular disease, all diseases with large inflammatory components. Some, but not all, reports show periopathogens Porphyromonas gingivialis and Tannerella forsythia at higher levels orally in people with one of these chronic diseases and in people with more severe cases. These oral pathogens are thought to be positively associated with systemic inflammatory diseases through induction of oral inflammation that works to distort systemic inflammation or by directly inducing inflammation at distal sites in the body. This study aimed to determine if, among patients with severe periodontal disease, those with multi-morbidity (or many chronic diseases) showed higher levels of periodontal pathogens. Methods A total of 201 adult subjects, including 84 with severe periodontal disease were recruited between 1/2017 and 6/2019 at a city dental clinic. Electronic charts supplied self-reported diseases and conditions which informed a morbidity index based on the number of chronic diseases and conditions present. Salivary composition was determined by 16S rRNA gene sequencing. Results As expected, patients with severe periodontal disease showed higher levels of periodontal pathogens in their saliva. Also, those with severe periodontal disease showed higher levels of multiple chronic diseases (multimorbidity). An examination of the 84 patients with severe periodontal disease revealed some subjects despite being of advanced age were free or nearly free of systemic disease. Surprisingly, the salivary microbiota of the least healthy of these 84 subjects, defined here as those with maximal multimorbidity, showed significantly lower relative numbers of periodontal pathogens, including Porphyromonas gingivalis and Tannerella Forsythia, after controlling for active caries, tobacco usage, age, and gender. Analysis of a control group with none to moderate periodontal disease revealed no association of multimorbidity or numbers of medications used and specific oral bacteria, indicating the importance of severe periodontal disease as a variable of interest. Conclusion The hypothesis that periodontal disease patients with higher levels of multimorbidity would have higher levels of oral periodontal pathogens is false. Multimorbidity is associated with a reduced relative number of periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia.
Collapse
Affiliation(s)
- Michael T Shen
- Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States of America
| | - Betti Shahin
- Restorative Dentistry, University of Illinois Chicago, Chicago, IL, United States of America
| | - Zhengjia Chen
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, United States of America
- Biostatistics Shared Resource Core, University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, United States of America
| | - Guy R Adami
- Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, United States of America
| |
Collapse
|