1
|
Ma K, Huang J, Zhang J, Tian Y, Hu J, Ma L, Wang C. Hydrogen Sulfide (H 2S) Mitigates Sepsis-Induced Adrenal Dysfunction via Inhibition of TNFα-Mediated Necroptosis. Pathogens 2025; 14:439. [PMID: 40430756 PMCID: PMC12113818 DOI: 10.3390/pathogens14050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition that is characterized by systemic inflammation and organ dysfunction, with adrenal dysfunction being a significant complication. This study aimed to investigate the role of necroptosis and hydrogen sulfide (H2S) in sepsis-induced adrenal dysfunction. METHODS A cecal ligation and puncture (CLP)-induced sepsis mouse model was employed. Adrenocortical-specific mixed lineage kinase domain-like pseudokinase (MLKL) knockout (MLKL-KO) and cystathioneine β-synthase (CBS) knockout (CBS-KO) mice were generated using Cre-loxP technology and adrenocortical-specific Cre tool mice. In vitro experiments utilized TNFα-stimulated Y1 adrenocortical cells. The treatments included the H2S donor NaHS, TNFα inhibitor R-7050, necroptosis inhibitor NSA and CBS inhibitor AOAA. Pathological assessment involved hematoxylin-eosin (H&E) staining and a Western blot analysis of necroptosis markers (the phosphorylation of MLKL (p-MLKL) and phosphorylation of receptor-interacting protein kinases 1 (p-RIPK1)). RESULTS Sepsis induced adrenal congestion, elevated TNFα levels, and activated necroptosis (increased p-MLKL/p-RIPK1) in wild-type mice. H2S treatment attenuated adrenal damage, reduced TNFα, and suppressed necroptosis. MLKL knockout reduced septic adrenal dysfunction, whereas CBS knockout exacerbated septic adrenal dysfunction. In vitro, TNFα induced Y1 cell necroptosis, which was reversed by H2S or NSA. AOAA exacerbated TNFα-induced necroptosis in Y1 cells. CONCLUSIONS H2S inhibits TNFα-mediated necroptosis, thereby preserving adrenal integrity in sepsis. Targeting the TNFα-necroptosis axis and enhancing endogenous H2S production may represent novel therapeutic strategies for sepsis-associated adrenal dysfunction.
Collapse
Affiliation(s)
- Kai Ma
- Lab of Stress Injury, School of Life Sciences, Shanghai University, Shanghai 200444, China; (K.M.); (J.H.); (Y.T.)
| | - Jingwen Huang
- Lab of Stress Injury, School of Life Sciences, Shanghai University, Shanghai 200444, China; (K.M.); (J.H.); (Y.T.)
| | - Jin Zhang
- General Practice Department, Shanghai Pudong New District Kangqiao Community Health Service Center, Shanghai 201315, China;
| | - Yuan Tian
- Lab of Stress Injury, School of Life Sciences, Shanghai University, Shanghai 200444, China; (K.M.); (J.H.); (Y.T.)
| | - Jing Hu
- Lab of Stress Injury, School of Life Sciences, Shanghai University, Shanghai 200444, China; (K.M.); (J.H.); (Y.T.)
| | - Linhao Ma
- Department of Emergency Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200081, China
| | - Changnan Wang
- Lab of Stress Injury, School of Life Sciences, Shanghai University, Shanghai 200444, China; (K.M.); (J.H.); (Y.T.)
| |
Collapse
|
2
|
Shi X, Yan Z, Ding R, Xia F, Du Y, Wang X, Peng Q. Integrated bioinformatics and experiment validation reveal cuproptosis-related biomarkers and therapeutic targets in sepsis-induced myocardial dysfunction. BMC Infect Dis 2025; 25:445. [PMID: 40165133 PMCID: PMC11956201 DOI: 10.1186/s12879-025-10822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Sepsis-induced myocardial dysfunction (SIMD) is a serious sepsis complication with high mortality, yet current diagnostic and therapeutic approaches remain limited. The lack of early, specific biomarkers and effective treatments necessitates exploration of novel mechanisms. Recently, cuproptosis has been implicated in various diseases, but its role in SIMD is unclear. This study aimed to identify cuproptosis-related biomarkers and potential therapeutic agents, supported by animal model validation. METHODS Four GEO datasets (GSE79962, GSE267388, GSE229925, GSE229298) were analyzed using Limma and WGCNA to identify overlapping genes from differentially expressed genes (DEGs), cuproptosis-related DEGs (DE-CRGs), and module-associated genes. Gene Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were performed to assess biological functions and immune cell infiltration, respectively. ceRNA and transcription factor networks were constructed to explore gene regulatory mechanisms, while consensus clustering was employed to define cuproptosis-related subtypes. Diagnostic genes were selected through SVM-RFE, LASSO, and random forest models. Additionally, potential gene-targeting agents were predicted using drug-gene interaction analysis. The findings were validated in SIMD animal models through qPCR and immunohistochemical analysis to confirm gene expression. RESULTS PDHB and DLAT emerged as key cuproptosis-related biomarkers. GSEA indicated upregulation of oxidative phosphorylation and downregulation of chemokine signaling. ssGSEA revealed negative correlations with several immune cell types. A ceRNA network (51 nodes, 56 edges) was constructed. Machine learning identified PDHB, NDUFA9, and TIMMDC1 as diagnostic genes, with PDHB showing high accuracy (AUC = 0.995 in GSE79962; AUC = 0.960, 0.864, and 0.984 in external datasets). Using the DSigDB database, we predicted six drugs that exhibit significant binding activity with PDHB. qPCR and immunohistochemistry confirmed reduced PDHB and DLAT expression in SIMD animal models. CONCLUSION This study identifies PDHB and DLAT as cuproptosis-related biomarkers, addressing the diagnostic and therapeutic gaps in SIMD by unveiling novel molecular insights for early intervention and targeted treatment. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xuemei Shi
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Zhonghan Yan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Ruilin Ding
- Institute of Drug Clinical Trial/GCP Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Fenfen Xia
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yan Du
- Department of Cardiology, Deyang People's Hospital, Deyang, Sichuan Province, 618099, China
| | - Xiaojie Wang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| | - Qing Peng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
3
|
Li J, Xiao F, Lin B, Huang Z, Wu M, Ma H, Dou R, Song X, Wang Z, Cai C, Guan X, Xu J, Xiang FL. Ferrostatin-1 improves acute sepsis-induced cardiomyopathy via inhibiting neutrophil infiltration through impaired chemokine axis. Front Cell Dev Biol 2024; 12:1510232. [PMID: 39726718 PMCID: PMC11669711 DOI: 10.3389/fcell.2024.1510232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Sepsis-induced cardiomyopathy is a common complication of sepsis and is associated with higher mortality. To date, effective diagnostic and management strategies are still lacking. Recent studies suggest that ferroptosis plays a critical role in sepsis-induced cardiomyopathy and ferroptosis inhibitor Ferrostatin-1 (Fer-1) improved cardiac dysfunction and survival in lipopolysaccharide (LPS) induced endotoxemia. However, the effects of Fer-1 in cardiac dysfunction in the early stages of cecal ligation and puncture (CLP) induced sepsis remains unclear. Our study aims to elucidate the role of Fer-1 in the acute phase of peritonitis sepsis induced cardiac injury. Methods and Results CLP was used to induce peritonitis sepsis in mice. Pretreatment of ferroptosis inhibitor ferrostatin-1 (Fer-1) was used in the in vivo models. Survival was monitored for 48h. Cardiac function and histology were analyzed 6h after surgery. We found that ejection fraction (EF) remained normal at 6h after CLP, but the contractility detected by cardiac muscle strain analysis was significantly reduced, along with increased immune cell infiltration. Pretreating the CLP mice with 5 mg/kg Fer-1 significantly reduced mortality. At 6h after CLP, ferroptosis key regulator Gpx4, cardiac iron and malonaldehyde (MDA) did not change, but ferroptosis marker gene expression increased. Fer-1 treatment showed beneficial effects in cardiac function, less myocardial inflammatory cytokine expression and significantly inhibited immune cells, especially neutrophil infiltration in the heart. Consistently, expression of neutrophil associated chemokines (Ccrl2, Cxcl2, Cxcl3 and Cxcl5) as well as extracellular matrix (ECM) degradation enzymes (Adamts1, Adamts4, Adamts9 and Mmp8) significantly decreased in Fer-1 pre-treated CLP heart. Conclusion and Discussion Our findings suggest that Fer-1 inhibits neutrophil infiltration in early sepsis by disrupting the chemokine axis, highlighting its potential as a therapeutic option to manage acute immune overactivation in early stages of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Jialin Li
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Xiao
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingsen Lin
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Anesthesia, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhilei Huang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyue Wu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Ma
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoxu Dou
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Song
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongxing Wang
- Department of Anesthesia, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changjie Cai
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Xu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Fu-Li Xiang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Guan H, Fang J. BMP10 Knockdown Modulates Endothelial Cell Immunoreactivity by Inhibiting the HIF-1α Pathway in the Sepsis-Induced Myocardial Injury. J Cell Mol Med 2024; 28:e70232. [PMID: 39611400 PMCID: PMC11605482 DOI: 10.1111/jcmm.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Sepsis is a life-threatening syndrome triggered by a cascade of dysregulated immune responses. Sepsis-induced myocardial injury (SIMI) substantially impacts the survival time of septic patients. However, the molecular mechanisms underlying the pathology of SIMI remain unclear. Immune-related differentially expressed genes in SIMI were identified through RNA sequencing and bioinformatics analysis. The expression levels of hub genes were detected using reverse transcription quantitative PCR. BMP10 was knocked down in the lipopolysaccharide-induced mouse and cardiac microvascular endothelial cell (CMEC) models, and its functions were assessed by a series of in vitro and in vivo assays. Cell adhesion and HIF-1 pathway-associated protein expressions were measured by western blot. Fenbendazole-d3 was used to investigate whether BMP10 influenced SIMI development by modulating the HIF-1 pathway. Six key genes were screened, of which BMP10, HAMP, TRIM5, and MLANA were highly expressed, and PTPRN2 and AVP were lowly expressed. BMP10 knockdown ameliorated histopathological changes and inhibited apoptosis and CMEC immune infiltration in SIMI. BMP10 knockdown reduced inflammatory factor (IL-6, MCP-1, IFN-β, and CCL11) levels and protein expressions of cell adhesion-related molecules (VCAM-1 and ICAM-1). Mechanistically, the HIF-1 pathway agonist, Fenbendazole-d3, significantly reversed the inhibitory effects of BMP10 knockdown on SIMI in vitro, indicating that BMP10 knockdown impeded the development of SIMI by suppressing the HIF-1α pathway. BMP10 knockdown blocks SIMI progression by inhibiting the HIF-1α pathway, which provides a new potential therapeutic strategy for SIMI treatment.
Collapse
Affiliation(s)
- Huan Guan
- Department of EmergencyGanzhou People's HospitalGanzhouJiangxiChina
| | - Jingyun Fang
- Department of EmergencyGanzhou People's HospitalGanzhouJiangxiChina
| |
Collapse
|
5
|
Han Z, Quan Z, Zeng S, Wen L, Wang H. Utilizing omics technologies in the investigation of sepsis-induced cardiomyopathy. IJC HEART & VASCULATURE 2024; 54:101477. [PMID: 39171080 PMCID: PMC11334652 DOI: 10.1016/j.ijcha.2024.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a common and high-mortality complication among critically ill patients. Uncertainties persist regarding the pathogenesis, pathophysiology, and diagnosis of SIC, underscoring the necessity to investigate potential biological mechanisms. With the rise of omics technologies, leveraging their high throughput and big data advantages, a systems biology perspective is employed to study the biological processes of SIC. This approach aids in gaining a better understanding of the disease's onset, progression, and outcomes, ultimately providing improved guidance for clinical practices. This review summarizes the currently applied omics technologies, omics studies related to SIC, and relevant omics databases.
Collapse
Affiliation(s)
- Zheng Han
- Harbin Medical University Graduate School, Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Zhen Quan
- Harbin Medical University Graduate School, Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Siyao Zeng
- Harbin Medical University Graduate School, Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Lianghe Wen
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| |
Collapse
|
6
|
Yao H, Xiao Z, Liu S, Gao X, Wu Z, Li D, Yi Z, Zhou H, Zhang W. Screening of novel disease genes of sepsis-induced myocardial Disfunction by RNA sequencing and bioinformatics analysis. Genomics 2024; 116:110911. [PMID: 39111545 DOI: 10.1016/j.ygeno.2024.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND There is still a lack of effective treatment for sepsis-induced myocardial dysfunction (SIMD), while the pathogenesis of SIMD still remains largely unexplained. METHODS RNA sequencing results (GSE267388 and GSE79962) were used for cross-species integrative analysis. Bioinformatic analyses were used to delve into function, tissue- and cell- specificity, and interactions of genes. External datasets and qRT-PCR experiments were used for validation. L1000 FWD was used to predict targeted drugs, and 3D structure files were used for molecular docking. RESULTS Based on bioinformatic analyses, ten differentially expressed genes were selected as genes of interest, seven of which were verified to be significantly differential expression. Bucladesine was considered as a potential targeted drug for SIMD, which banded to seven target proteins primarily by forming hydrogen bonds. CONCLUSION It was considered that Cebpd, Timp1, Pnp, Osmr, Tgm2, Cp, and Asb2 were novel disease genes, while bucladesine was a potential therapeutic drug, of SIMD.
Collapse
Affiliation(s)
- Hanyi Yao
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zixi Xiao
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shufang Liu
- Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xingjian Gao
- Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zehong Wu
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Dongping Li
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhangqing Yi
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haojie Zhou
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Weizhi Zhang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Yin R, Fang X, Miao R, Guan H, Yao Y, Tian J. Multi-omics characterization of type 2 diabetes mellitus-induced gastroenteropathy in the db/db mouse model. Front Cell Dev Biol 2024; 12:1417255. [PMID: 39211388 PMCID: PMC11357919 DOI: 10.3389/fcell.2024.1417255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Gastrointestinal dysfunction are often associated with type 2 diabetes mellitus (T2DM), a complicated metabolic illness. Contributing factors have been proposed, including genetic predisposition, gene environmental, and lifestyle interactions, but the pathophysiology remains unknown. Methods We aim to explore the possible causes behind gastrointestinal dysfunction caused by type 2 diabetes in this study. A comprehensive analysis of the gastric sinus metabolome, transcriptome, and proteome in db/db mice with gastrointestinal dysfunction was conducted. Results The model group of mice had considerably lower small intestine propulsion and gastric emptying rates, higher blood glucose levels, and were significantly obese compared to the control group. We identified 297 genes, 350 proteins, and 1,001 metabolites exhibiting significant differences between db/db and control mice (p < 0.05). Moreover, multi-omics analysis revealed that the genes, proteins, and metabolites in the T2DM-induced gastroenteropathy mice group were involved in arachidonic acid metabolism, glycerophospholipid metabolism and vitamin digestion and absorption. Specifically, Cbr3, Etnppl, and Apob were the major mRNAs associated with T2DM-induced gastrointestinal dysfunction, while Cyp2b10, Cyp2b19, Pgs1, Gpat3, Apoa4, and Tcn2 were the major proteins associated with T2DM-induced gastrointestinal injury, and 16(R)-HET, 5-HETE, LysoPC (22:0), and Pantothenic acid were the major metabolites associated with T2DM-induced gastrointestinal disorders. Conclusion The mechanism of action of diabetic gastroenteropathy may be related to vitamin digestion and absorption, glycerophospholipid metabolism, and arachidonic acid metabolism.
Collapse
Affiliation(s)
- Yuxin Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Huifang Guan
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Yiqi Yao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Yu Y, Fu Q, Li J, Zen X, Li J. E3 ubiquitin ligase COP1-mediated CEBPB ubiquitination regulates the inflammatory response of macrophages in sepsis-induced myocardial injury. Mamm Genome 2024; 35:56-67. [PMID: 37980295 DOI: 10.1007/s00335-023-10027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
CCAAT/enhancer-binding protein beta (CEBPB) has been associated with sepsis. However, its role in sepsis-induced myocardial injury (SIMI) remains ill-defined. This research was designed to illustrate the involvement of CEBPB in SIMI and its upstream modifier. The transcriptomic changes in heart biopsies of mice that had undergone polymicrobial sepsis were downloaded from the GEO dataset for KEGG enrichment analysis. CEBPB, on the TNF signaling pathway, was significantly enhanced in the myocardial tissues of mice with SIMI. Downregulation of CEBPB alleviated SIMI, as evidenced by minor myocardial injury and inflammatory manifestations. Moreover, ubiquitination modification of CEBPB by constitutive photomorphogenesis protein 1 homolog (COP1) led to the degradation of CEBPB and inhibited inflammatory responses in macrophages. Upregulation of COP1 protected against SIMI in mice overexpressing CEBPB. Collectively, our findings demonstrated that COP1 protected the heart against SIMI through the ubiquitination modification of CEBPB, which might be a novel therapeutic approach in the future.
Collapse
Affiliation(s)
- Yangzi Yu
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| | - Qiang Fu
- Department of Critical Care Medicine, Tianjin Forth Central Hospital, No. 3, Zhongshan Road, Hebei District, Tianjin, 300142, P.R. China.
| | - Jiarui Li
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| | - Xianming Zen
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| | - Jing Li
- Department of Ultrasound, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| |
Collapse
|