1
|
Zhu Y, Song M, Pan Y, Zhao Y, Liu H. Evaluation and Application of the MIRA-qPCR Method for Rapid Detection of Norovirus Genogroup II in Shellfish. Microorganisms 2025; 13:712. [PMID: 40284551 PMCID: PMC12029516 DOI: 10.3390/microorganisms13040712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Globally, norovirus has become the primary cause of outbreaks of acute gastroenteritis, and an increasing number of norovirus GII infections have been associated with shellfish. This highlights the urgent need to establish sensitive and rapid detection platforms for timely screening of contaminated shellfish to reduce the risk of virus transmission. To address this challenge, we developed a novel detection method combining multienzyme isothermal rapid amplification (MIRA) with qPCR, referred to as MIRA-qPCR, specifically targeting norovirus GII. It exhibited robust specificity, demonstrating no cross-reactivity with sapovirus, rotavirus, hepatitis A virus, Escherichia coli, Listeria monocytogenes, or Vibrio parahaemolyticus, and exhibited high sensitivity, detecting as low as 1.62 copies/μL for recombinant plasmid standards. Furthermore, MIRA-qPCR showed good linearity in the 1.62 × 101 to 1.62 × 107 copies/μL range, with an R2 > 0.90. MIRA-qPCR and qPCR assays were performed on 125 fresh shellfish samples; there was good consistency in the detection results, and the Kappa value was 0.90 (p < 0.001). The sensitivity and specificity of the MIRA-qPCR detection were 100.00% and 97.25%, respectively. The MIRA-qPCR technique provides a viable alternative for the rapid screening of norovirus GII-contaminated shellfish to guarantee food safety.
Collapse
Affiliation(s)
- Yanting Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengyuan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Liu J, An T, Peng J, Zhu Q, Zhao H, Liang Z, Mo K, Liu T, Wu K. An amplification-free digital droplet assay for influenza A viral RNA based on CRISPR/Cas13a. Analyst 2025; 150:1151-1157. [PMID: 39950596 DOI: 10.1039/d4an01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Most of the CRISPR-based RNA detection methods are combined with amplification to improve sensitivity, which lead to some drawbacks such as aerosol pollution, complicated operation, and amplification bias. To address the above issues, we developed a digital detection method for influenza A viral RNA based on droplet microfluidics and CRISPR/Cas13a without polymerase chain reaction. We used a microsphere coupled to a capture probe to extract and concentrate the target RNA from the samples, and then restricted the target-induced CRISPR/Cas13a cleavage event to microfluidic droplets, thus enhancing the local signal intensity and enabling single-molecule detection. With a detection limit of 10 copies per μL, influenza A viral RNA can be detected in less than 1 h. Both clinical and synthetic series samples were used to validate the assay's performance. With the help of this direct RNA diagnostic method, a variety of RNA molecules can be easily and accurately detected at the single-molecule level. This research has broad prospects in clinical applications.
Collapse
Affiliation(s)
- Jiayan Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingjie Peng
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Qinjiang Zhu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Middle Gongye Avenue No. 253, Guangzhou, China.
| | - Heyang Zhao
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Zhiyu Liang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Kai Mo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Middle Gongye Avenue No. 253, Guangzhou, China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Kun Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Ma J, Tian T, Zeng N, Gu Y, Ren X, Jin Z. The value of common blood parameters for the differential diagnosis of respiratory tract infections in children. AMB Express 2025; 15:25. [PMID: 39918743 PMCID: PMC11806179 DOI: 10.1186/s13568-025-01829-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025] Open
Abstract
Mycoplasma pneumoniae and influenza A virus are common pathogens that cause respiratory tract infection in children. Both pathogens present with similar clinical symptoms, and their epidemic periods often overlap. Consequently, it is challenging for clinicians to make a rapid preliminary diagnosis. However, common blood tests is simple and efficient, Therefore, the purpose of this study is to preliminarily distinguish Mycoplasma pneumoniae and influenza A virus infection in children by analyzing the results of common blood tests, thereby guiding clinical diagnosis and treatment.The results showed that, compared with children in the influenza A virus-positive group, children in the Mycoplasma pneumoniae-positive group had higher white blood cell (WBC), red blood cell (RBC), haemoglobin (HGB), platelet (PLT) counts, lymphocyte (LYM) and eosinophil (EOS) counts and ratios, as well as higher concentrations of C-reactive protein (CRP) and serum amyloid A (SAA), while neutrophil (NEU) and monocyte (MONO) counts and ratios, Neutrophil to Lymphocyte ratio( NLR) were lower, in addition, LYM, EOS counts and ratios, and NLR were all more effective in differentiating between the two pathogen infections, A combined analysis of these indicators further improved the differentiation efficacy. Therefore, LYM and EOS counts and ratios, along with NLR, can serve as effective blood parameters for differentiating Mycoplasma pneumoniae infections from influenza A virus infections in children.
Collapse
Affiliation(s)
- Jun'e Ma
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Ting Tian
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Nianyi Zeng
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Yue Gu
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Xuewei Ren
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Zhengjiang Jin
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.
| |
Collapse
|
4
|
Wu H, Cao H, Gao X, Shi C, Wang L, Gao B. The role of metagenomic next-generation sequencing in diagnosing and managing post-kidney transplantation infections. Front Cell Infect Microbiol 2025; 14:1473068. [PMID: 39839264 PMCID: PMC11747774 DOI: 10.3389/fcimb.2024.1473068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Kidney transplantation (KT) is a life-saving treatment for patients with end-stage renal disease, but post-transplant infections remain one of the most significant challenges. These infections, caused by a variety of pathogens, can lead to prolonged hospitalization, graft dysfunction, and even mortality, particularly in immunocompromised patients. Traditional diagnostic methods often fail to identify the causative organisms in a timely manner, leading to delays in treatment and poorer patient outcomes. This review explores the application of metagenomic next-generation sequencing (mNGS) in the diagnosis of post-KT infections. mNGS allows for the rapid, comprehensive detection of a wide range of pathogens, including bacteria, viruses, fungi, and parasites, without the need for culture-based techniques. We discuss the advantages of mNGS in early and accurate pathogen identification, its role in improving patient management, and the potential challenges in its clinical implementation. Additionally, we consider the future prospects of mNGS in overcoming current diagnostic limitations and its potential for guiding targeted therapies, particularly in detecting antimicrobial resistance and emerging pathogens. This review emphasizes the promise of mNGS as an essential tool in improving the diagnosis and treatment of infections in KT recipients.
Collapse
Affiliation(s)
| | | | | | | | | | - Baoshan Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Li J, Cui H, Zhang Y, Wang X, Liu H, Mu Y, Wang H, Chen X, Dong T, Zhang C, Chen L. A Rapid Detection Method for H3 Avian Influenza Viruses Based on RT-RAA. Animals (Basel) 2024; 14:2601. [PMID: 39272386 PMCID: PMC11393923 DOI: 10.3390/ani14172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The continued evolution of H3 subtype avian influenza virus (AIV)-which crosses the interspecific barrier to infect humans-and the potential risk of genetic recombination with other subtypes pose serious threats to the poultry industry and human health. Therefore, rapid and accurate detection of H3 virus is highly important for preventing its spread. In this study, a method based on real-time reverse transcription recombinase-aided isothermal amplification (RT-RAA) was successfully developed for the rapid detection of H3 AIV. Specific primers and probes were designed to target the hemagglutinin (HA) gene of H3 AIV, ensuring highly specific detection of H3 AIV without cross-reactivity with other important avian respiratory viruses. The results showed that the detection limit of the RT-RAA fluorescence reading method was 224 copies/response within the 95% confidence interval, while the detection limit of the RT-RAA visualization method was 1527 copies/response within the same confidence interval. In addition, 68 clinical samples were examined and the results were compared with those of real-time quantitative PCR (RT-qPCR). The results showed that the real-time fluorescence RT-RAA and RT-qPCR results were completely consistent, and the kappa value reached 1, indicating excellent correlation. For visual detection, the sensitivity was 91.43%, the specificity was 100%, and the kappa value was 0.91, which also indicated good correlation. In addition, the amplified products of RT-RAA can be visualized with a portable blue light instrument, which enables rapid detection of H3 AIV even in resource-constrained environments. The H3 AIV RT-RAA rapid detection method established in this study can meet the requirements of basic laboratories and provide a valuable reference for the early diagnosis of H3 AIV.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yuxin Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xuejing Wang
- The Animal Husbandry and Veterinary Institute of Hebei, Baoding, 071001, China
| | - Huage Liu
- The Animal Husbandry and Veterinary Institute of Hebei, Baoding, 071001, China
| | - Yingli Mu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Hongwei Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xiaolong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Tongchao Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
6
|
Dong Y, Zhou D, Zhang B, Xu X, Zhang J. Development of a real-time recombinase-aided amplification assay for rapid and sensitive detection of Edwardsiella piscicida. Front Cell Infect Microbiol 2024; 14:1355056. [PMID: 38606294 PMCID: PMC11007066 DOI: 10.3389/fcimb.2024.1355056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Edwardsiella piscicida, a significant intracellular pathogen, is widely distributed in aquatic environments and causes systemic infection in various species. Therefore, it's essential to develop a rapid, uncomplicated and sensitive method for detection of E. piscicida in order to control the transmission of this pathogen effectively. The recombinase-aided amplification (RAA) assay is a newly developed, rapid detection method that has been utilized for various pathogens. In the present study, a real-time RAA (RT-RAA) assay, targeting the conserved positions of the EvpP gene, was successfully established for the detection of E. piscicida. This assay can be performed in a one-step single tube reaction at a temperature of 39°C within 20 min. The RT-RAA assay exhibited a sensitivity of 42 copies per reaction at a 95% probability, which was comparable to the sensitivity of real-time quantitative PCR (qPCR) assay. The specificity assay confirmed that the RT-RAA assay specifically targeted E. piscicida without any cross-reactivity with other important marine bacterial pathogens. Moreover, when clinical specimens were utilized, a perfect agreement of 100% was achieved between the RT-RAA and qPCR assays, resulting a kappa value of 1. These findings indicated that the established RT-RAA assay provided a viable alternative for the rapid, sensitive, and specific detection of E. piscicida.
Collapse
Affiliation(s)
- Yuchen Dong
- School of Ocean, Yantai University, Yantai, China
| | - Dandan Zhou
- School of Ocean, Yantai University, Yantai, China
| | - Binzhe Zhang
- School of Ocean, Yantai University, Yantai, China
| | - Xiaoying Xu
- Yantai Marine Economic Research Institute, Yantai, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| |
Collapse
|
7
|
Li Y, Shang J, Wang Y, Luo J, Jiang W, Yin X, Zhang F, Deng C, Yu X, Liu H. Establishment of two assays based on reverse transcription recombinase-aided amplification technology for rapid detection of H5 subtype avian influenza virus. Microbiol Spectr 2023; 11:e0218623. [PMID: 37811963 PMCID: PMC10715165 DOI: 10.1128/spectrum.02186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/10/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Avian influenza virus (AIV) subtype H5 is a highly contagious zoonotic disease and a serious threat to the farming industry and public health. Traditional detection methods, including virus isolation and real-time PCR, require tertiary biological laboratories and are time-consuming and complex to perform, making it difficult to rapidly diagnose H5 subtype avian influenza viruses. In this study, we successfully developed two methods, namely, RF-RT-RAA and RT-RAA-LFD, for rapid detection of H5-AIV. The assays are characterized by their high specificity, sensitivity, and user-friendliness. Moreover, the results of the reaction can be visually assessed, which are suitable for both laboratory testing and grassroots farm screening for H5-AIV.
Collapse
Affiliation(s)
- Yang Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jiajing Shang
- China Animal Health and Epidemiology Center, Qingdao, China
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Shandong, China
| | - Juan Luo
- China Animal Health and Epidemiology Center, Qingdao, China
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Fuyou Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Chunran Deng
- China Animal Health and Epidemiology Center, Qingdao, China
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - HuaLei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
8
|
Mao X, Xu M, Luo S, Yang Y, Zhong J, Zhou J, Fan H, Li X, Chen Z. Advancements in the synergy of isothermal amplification and CRISPR-cas technologies for pathogen detection. Front Bioeng Biotechnol 2023; 11:1273988. [PMID: 37885449 PMCID: PMC10598474 DOI: 10.3389/fbioe.2023.1273988] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
In the realm of pathogen detection, isothermal amplification technology has emerged as a swift, precise, and sensitive alternative to conventional PCR. This paper explores the fundamental principles of recombinase polymerase amplification (RPA) and recombinase-aid amplification (RAA) and reviews the current status of integrating the CRISPR-Cas system with RPA/RAA techniques. Furthermore, this paper explores the confluence of isothermal amplification and CRISPR-Cas technology, providing a comprehensive review and enhancements of existing combined methodologies such as SHERLOCK and DETECTR. We investigate the practical applications of RPA/RAA in conjunction with CRISPR-Cas for pathogen detection, highlighting how this integrated approach significantly advances both research and clinical implementation in the field. This paper aims to provide readers with a concise understanding of the fusion of RPA/RAA and CRISPR-Cas technology, offering insights into their clinical utility, ongoing enhancements, and the promising prospects of this integrated approach in pathogen detection.
Collapse
Affiliation(s)
- Xiaolei Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Minghui Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shuyin Luo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yi Yang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaye Zhong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiawei Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Huayan Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zhi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
9
|
Cui H, Guan J, Lu H, Liu J, Tu F, Zhang C, Su K, Guo Z, Zhao K. Rapid Onsite Visual Detection of Orf Virus Using a Recombinase-Aided Amplification Assay. Life (Basel) 2023; 13:life13020494. [PMID: 36836851 PMCID: PMC9968157 DOI: 10.3390/life13020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Orf is an important zoonotic disease caused by the Orf virus (ORFV) which can cause contagious pustular dermatitis in goats and sheep. Orf is widespread in most sheep-raising countries in the world, causing huge economic losses. Although diagnostic methods for ORFV infection already exist, it is still necessary to develop a time-saving, labor-saving, specific, low-cost and visual diagnostic method for rapid detection of ORFV in the field and application in grassroots laboratories. This study establishes a DNA extraction-free, real-time, visual recombinase-aided amplification (RAA) method for the rapid detection of ORFV. This method is specific to ORFV and does not cross-react with other common DNA viruses. The detection limits of the real-time RAA and visual judgment of the RAA assay at 95% probability were 13 and 21 copies per reaction for ORFV, respectively. Compared with qPCR, the sensitivity and specificity of the real-time RAA assay were 100%, and those of the visual RAA assay were 92.31% and 100.0%, respectively. The DNA extraction-free visual detection method of RAA established in this study can meet the needs of rapid onsite detection and grassroots laboratories and has important reference value and significance for the early diagnosis of diseased animals.
Collapse
Affiliation(s)
- Huan Cui
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiyu Guan
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Fei Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Kai Su
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (Z.G.); (K.Z.)
| | - Kui Zhao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Correspondence: (Z.G.); (K.Z.)
| |
Collapse
|