1
|
Suma HR, Stallforth P. Pleiotropic regulation of bacterial toxin production and Allee effect govern microbial predator-prey interactions. ISME COMMUNICATIONS 2025; 5:ycaf031. [PMID: 40083912 PMCID: PMC11904905 DOI: 10.1093/ismeco/ycaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
Bacteria are social organisms, which are constantly exposed to predation by nematodes or amoebae. To counteract these predation pressures, bacteria have evolved a variety of potent antipredator strategies. Bacteria of the genus Pseudomonas, for instance, evade amoebal predation by the secretion of amoebicidal natural products. The soil bacterium Pseudomonas fluorescens HKI0770 produces pyreudione alkaloids that can kill amoebae. Even though the mode of action of the pyreudiones has been elucidated, the spatiotemporal dynamics underlying this predator-prey interaction remain unknown. Using a combination of microscopy and analytical techniques, we elucidated the intricate relationship of this predator-prey association. We used the chromatic bacteria toolbox for intraspecific differentiation of the amoebicide-producing wildtype and the non-producing mutant within microcosms. These allow for variations in nutrient availability and the emergence of predation-evasion strategies of interacting microorganisms. Imaging of the co-cultures revealed that the amoebae initially ingest both the non-producer as well as the toxin-producer cells. The outcomes of predator-prey interactions are governed by the population size and fitness of the interacting partners. We identified that changes in the cell density coupled with alterations in nutrient availability led to a strong Allee effect resulting in the diminished production of pyreudione A. The loss of defense capabilities renders P. fluorescens HKI0770 palatable to amoebae. Such a multifaceted regulation provides the basis for a model by which predator-prey populations are being regulated in specific niches. Our results demonstrate how the spatiotemporal regulation of bacterial toxin production alters the feeding behavior of amoeba.
Collapse
Affiliation(s)
- Harikumar R Suma
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology—Leibniz-HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology—Leibniz-HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University, Humboldtstrasse 10, 07743 Jena, Germany
| |
Collapse
|
2
|
Horiguchi Y. Current understanding of Bordetella-induced cough. Microbiol Immunol 2024; 68:123-129. [PMID: 38318657 DOI: 10.1111/1348-0421.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Typical pathogenic bacteria of the genus Bordetella cause respiratory diseases, many of which are characterized by severe coughing in host animals. In human infections with these bacteria, such as whooping cough, coughing imposes a heavy burden on patients. The pathophysiology of this severe coughing had long been uncharacterized because convenient animal models that reproduce Bordetella-induced cough have not been available. However, rat and mouse models were recently shown as useful for understanding, at least partially, the causative factors and the mechanism of Bordetella-induced cough. Many types of coughs are induced under various physiological conditions, and the neurophysiological pathways of coughing are considered to vary among animal species, including humans. However, the neurophysiological mechanisms of the coughs in different animal species have not been entirely understood, and, accordingly, the current understanding of Bordetella-induced cough is still incomplete. Nevertheless, recent research findings may open the way for the development of prophylaxis and therapeutic measures against Bordetella-induced cough.
Collapse
Affiliation(s)
- Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Rivera-Millot A, Harrison LB, Veyrier FJ. Copper management strategies in obligate bacterial symbionts: balancing cost and benefit. Emerg Top Life Sci 2024; 8:29-35. [PMID: 38095549 PMCID: PMC10903467 DOI: 10.1042/etls20230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 02/23/2024]
Abstract
Bacteria employ diverse mechanisms to manage toxic copper in their environments, and these evolutionary strategies can be divided into two main categories: accumulation and rationalization of metabolic pathways. The strategies employed depend on the bacteria's lifestyle and environmental context, optimizing the metabolic cost-benefit ratio. Environmental and opportunistically pathogenic bacteria often possess an extensive range of copper regulation systems in order to respond to variations in copper concentrations and environmental conditions, investing in diversity and/or redundancy as a safeguard against uncertainty. In contrast, obligate symbiotic bacteria, such as Neisseria gonorrhoeae and Bordetella pertussis, tend to have specialized and more parsimonious copper regulation systems designed to function in the relatively stable host environment. These evolutionary strategies maintain copper homeostasis even in challenging conditions like encounters within phagocytic cells. These examples highlight the adaptability of bacterial copper management systems, tailored to their specific lifestyles and environmental requirements, in the context of an evolutionary the trade-off between benefits and energy costs.
Collapse
Affiliation(s)
- Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Luke B. Harrison
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Frédéric J. Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
4
|
First NJ, Parrish KM, Martínez-Pérez A, González-Fernández Á, Bharrhan S, Woolard M, McLachlan JB, Scott RS, Wang J, Gestal MC. Bordetella spp. block eosinophil recruitment to suppress the generation of early mucosal protection. Cell Rep 2023; 42:113294. [PMID: 37883230 PMCID: PMC11682855 DOI: 10.1016/j.celrep.2023.113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Bordetella spp. are respiratory pathogens equipped with immune evasion mechanisms. We previously characterized a Bordetella bronchiseptica mutant (RB50ΔbtrS) that fails to suppress host responses, leading to rapid clearance and long-lasting immunity against reinfection. This work revealed eosinophils as an exclusive requirement for RB50ΔbtrS clearance. We also show that RB50ΔbtrS promotes eosinophil-mediated B/T cell recruitment and inducible bronchus-associated lymphoid tissue (iBALT) formation, with eosinophils being present throughout iBALT for Th17 and immunoglobulin A (IgA) responses. Finally, we provide evidence that XCL1 is critical for iBALT formation but not maintenance, proposing a novel role for eosinophils as facilitators of adaptive immunity against B. bronchiseptica. RB50ΔbtrS being incapable of suppressing eosinophil effector functions illuminates active, bacterial targeting of eosinophils to achieve successful persistence and reinfection. Overall, our discoveries contribute to understanding cellular mechanisms for use in future vaccines and therapies against Bordetella spp. and extension to other mucosal pathogens.
Collapse
Affiliation(s)
- Nicholas J First
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Katelyn M Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Amparo Martínez-Pérez
- CINBIO, Universidade de Vigo, Immunology Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Galicia, Spain
| | - África González-Fernández
- CINBIO, Universidade de Vigo, Immunology Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Galicia, Spain
| | - Sushma Bharrhan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Immunophenotyping Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Matthew Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Immunophenotyping Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rona S Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Bioinformatics and Modeling Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Jian Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Bioinformatics and Modeling Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Monica C Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA.
| |
Collapse
|
5
|
Shirakawa KT, Sala FA, Miyachiro MM, Job V, Trindade DM, Dessen A. Architecture and genomic arrangement of the MurE-MurF bacterial cell wall biosynthesis complex. Proc Natl Acad Sci U S A 2023; 120:e2219540120. [PMID: 37186837 PMCID: PMC10214165 DOI: 10.1073/pnas.2219540120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, mur genes are present in a single operon within the well conserved dcw cluster, and in some cases, pairs of mur genes are fused to encode a single, chimeric polypeptide. We performed a vast genomic analysis using >140 bacterial genomes and mapped Mur chimeras in numerous phyla, with Proteobacteria carrying the highest number. MurE-MurF, the most prevalent chimera, exists in forms that are either directly associated or separated by a linker. The crystal structure of the MurE-MurF chimera from Bordetella pertussis reveals a head-to-tail, elongated architecture supported by an interconnecting hydrophobic patch that stabilizes the positions of the two proteins. Fluorescence polarization assays reveal that MurE-MurF interacts with other Mur ligases via its central domains with KDs in the high nanomolar range, backing the existence of a Mur complex in the cytoplasm. These data support the idea of stronger evolutionary constraints on gene order when encoded proteins are intended for association, establish a link between Mur ligase interaction, complex assembly and genome evolution, and shed light on regulatory mechanisms of protein expression and stability in pathways of critical importance for bacterial survival.
Collapse
Affiliation(s)
- Karina T. Shirakawa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, CEP Campinas, São Paulo13083-862, Brazil
| | - Fernanda Angélica Sala
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
| | - Mayara M. Miyachiro
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| | - Viviana Job
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| | - Daniel Maragno Trindade
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| |
Collapse
|
6
|
Nugraha DK, Nishida T, Tamaki Y, Hiramatsu Y, Yamaguchi H, Horiguchi Y. Survival of Bordetella bronchiseptica in Acanthamoeba castellanii. Microbiol Spectr 2023; 11:e0048723. [PMID: 36971600 PMCID: PMC10100856 DOI: 10.1128/spectrum.00487-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The respiratory pathogenic bacterium Bordetella bronchiseptica can persistently survive in terrestrial and aquatic environments, providing a source of infection. However, the environmental lifestyle of the bacterium is poorly understood. In this study, expecting repeated encounters of the bacteria with environmental protists, we explored the interaction between B. bronchiseptica and a representative environmental amoeba, Acanthamoeba castellanii, and found that the bacteria resisted amoeba digestion and entered contractile vacuoles (CVs), which are intracellular compartments involved in osmoregulation, to escape amoeba cells. In prolonged coculture, A. castellanii supported the proliferation of B. bronchiseptica. The avirulent Bvg- phase, but not the virulent Bvg+ phase, of the bacteria was advantageous for survival in the amoebae. We further demonstrate that two Bvg+ phase-specific virulence factors, filamentous hemagglutinin and fimbriae, were targeted for predation by A. castellanii. These results are evidence that the BvgAS two-component system, the master regulator for Bvg phase conversion, plays an indispensable role in the survival of B. bronchiseptica in amoebae. IMPORTANCE The pathogenic bacterium Bordetella bronchiseptica, which causes respiratory diseases in various mammals, exhibits distinct Bvg+ and Bvg- phenotypes. The former represents the virulent phase, in which the bacteria express a set of virulence factors, while the role of the latter in the bacterial life cycle remains to be understood. In this study, we demonstrate that B. bronchiseptica in the Bvg- phase, but not the Bvg+ phase, survives and proliferates in coculture with Acanthamoeba castellanii, an environmental amoeba. Two Bvg+ phase-specific virulence factors, filamentous hemagglutinin and fimbriae, were targeted by A. castellanii predation. B. bronchiseptica turns into the Bvg- phase at temperatures in which the bacteria normally encounter these amoebae. These findings demonstrate that the Bvg- phase of B. bronchiseptica is advantageous for survival outside mammalian hosts and that the bacteria can utilize protists as transient hosts in natural environments.
Collapse
Affiliation(s)
- Dendi Krisna Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuki Tamaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|