1
|
Matthews EL, Hirsch MJ, Prokopczuk F, Jones LI, Martínez E, Barnes JW, Krick S. Wound repair and immune function in the Pseudomonas infected CF lung: before and after highly effective modulator therapy. Front Cell Infect Microbiol 2025; 15:1566495. [PMID: 40357395 PMCID: PMC12066499 DOI: 10.3389/fcimb.2025.1566495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
The leading cause of death for people with cystic fibrosis (pwCF) continues to be due to respiratory-related illnesses. Both wound repair and immune cell responses are dysregulated in the CF airways, creating a cycle of unresolved injury and perpetuating inflammation. PwCF are predisposed to colonization and infections with opportunistic bacteria like Pseudomonas aeruginosa (Pa), the most common adult pathogen in CF. Pa possesses key virulence factors that can exacerbate chronic inflammation and lung injury. With the approval of highly effective modulator therapies like elexacaftor/tezacaftor/ivacaftor (ETI), pwCF eligible for ETI have seen drastic improvements in lung function and clinical outcomes, including an increased life expectancy. While modulator therapies are improving bronchial epithelial cellular processes in wound repair and some areas of immunity, many of these processes do not reach a non-CF baseline state or have not been thoroughly studied. The effect of modulator therapy on Pa may lead to a reduction in infection, but in more longitudinal studies, there is not always eradication of Pa, and colonization and infection frequency can return to pre-modulator levels over time. Finally, in this review we explore the current state of additional treatments for CF lung disease, independent of CFTR genotype, including anti-inflammatories, phage-therapies, and Pa vaccines.
Collapse
Affiliation(s)
- Emma Lea Matthews
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Federico Prokopczuk
- Department of Microbiology, The University of Alabama at Birmingham,
Birmingham, AL, United States
| | - Luke I. Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eriel Martínez
- Department of Microbiology, The University of Alabama at Birmingham,
Birmingham, AL, United States
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Montanez-Barragan A, Robledo-Avila FH, Rascon R, McCoy KS, Kopp BT, Partida-Sanchez S. Flow cytometric measurement of CFTR-mediated chloride transport in human neutrophils. J Leukoc Biol 2025; 117:qiaf006. [PMID: 39837350 DOI: 10.1093/jleuko/qiaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 01/20/2025] [Indexed: 01/23/2025] Open
Abstract
Immune cells express a variety of ion channels and transporters in the plasma membrane and intracellular organelles, responsible of the transference of charged ions across hydrophobic lipid membrane barriers. The correct regulation of ion transport ensures proper immune cell function, activation, proliferation, and cell death. Cystic fibrosis (CF) is a genetic disease in which the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel gene is defective; consequently, the CFTR protein is dysfunctional, and the chloride efflux in CF cells is markedly impaired. CF is characterized by chronic inflammation in the airways, mainly triggered by neutrophilic infiltration and recurring bacterial infections, causing the decline of lung function and eventually respiratory failure. Novel modulator-based therapies have improved lung function in people with CF by increasing expression and function of CFTR in the plasma membrane of lung cells; however, the effects of these drugs in the lung-recruited inflammatory cells, specifically neutrophils, remains unknown. Given the complex biology of neutrophils and their short lifespan, we aimed to develop a fluorometric method to evaluate CFTR-mediated chloride transport in human neutrophils by using flow cytometry and the intracellular chloride-binding MQAE dye. Our results show that CFTR-mediated chloride transport in human neutrophils or human neutrophil-like cell lines can be consistently evaluated in vitro by this methodology. Additionally, this assay measured increased chloride efflux in neutrophils collected from people with CF under modulator therapy, as compared with healthy donors, indicating that this method can evaluate restoration of CFTR-mediated chloride transport in CF neutrophils.
Collapse
Affiliation(s)
- Alejandra Montanez-Barragan
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Childrens Dr, Columbus, OH 43205, United States
| | - Frank H Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Childrens Dr, Columbus, OH 43205, United States
| | - Raul Rascon
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Childrens Dr, Columbus, OH 43205, United States
| | - Karen S McCoy
- Division of Pulmonary and Sleep Medicine, Nationwide Children's Hospital, 700 Childrens Dr, Columbus, OH 43205, United States
| | - Benjamin T Kopp
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Emory Children's Center, 2015 Uppergate Drive, Atlanta, GA 30322, United States
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Childrens Dr, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University College of Medicine, 1645 Neil Ave, Columbus, OH 43210, United States
| |
Collapse
|
3
|
Chesshyre E, Wooding E, Sey E, Warris A. Aspergillus in Children and Young People with Cystic Fibrosis: A Narrative Review. J Fungi (Basel) 2025; 11:210. [PMID: 40137248 PMCID: PMC11943196 DOI: 10.3390/jof11030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Cystic fibrosis is a severe, inherited, life-limiting disorder, and over half of those living with CF are children. Persistent airway infection and inflammation, resulting in progressive lung function decline, is the hallmark of this disorder. Aspergillus colonization and infection is a well-known complication in people with CF and can evolve in a range of Aspergillus disease phenotypes, including Aspergillus bronchitis, fungal sensitization, and allergic bronchopulmonary aspergillosis (ABPA). Management strategies for children with CF are primarily aimed at preventing lung damage and lung function decline caused by bacterial infections. The role of Aspergillus infections is less understood, especially during childhood, and therefore evidence-based diagnostic and treatment guidelines are lacking. This narrative review summarizes our current understanding of the impact of Aspergillus on the airways of children and young people with CF.
Collapse
Affiliation(s)
- Emily Chesshyre
- MRC Centre for Medical Mycology, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK (E.S.)
- Department of Paediatrics, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Eva Wooding
- MRC Centre for Medical Mycology, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK (E.S.)
- Department of Paediatrics, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Emily Sey
- MRC Centre for Medical Mycology, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK (E.S.)
| | - Adilia Warris
- MRC Centre for Medical Mycology, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK (E.S.)
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital, London WC1N 3JH, UK
| |
Collapse
|
4
|
Kondratskyi A, Bazzone A, Rapedius M, Zerlotti R, Masson B, Sadanandan NP, Parker JL, Santinho A, Moutia M, Thiam AR, Kemp A, Seibertz F, Murciano N, Friis S, Becker N, Obergrussberger A, Barthmes M, George C, George M, Dalrymple D, Gasnier B, Newstead S, Grimm C, Fertig N. Lysosomal Ion Channels and Transporters: Recent Findings, Therapeutic Potential, and Technical Approaches. Bioelectricity 2025; 7:29-57. [PMID: 40342936 PMCID: PMC12056583 DOI: 10.1089/bioe.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
In recent years, there has been a growing interest in lysosomal ion channels and transporters due to their critical role in maintaining lysosomal function and their involvement in a variety of diseases, particularly lysosomal storage diseases, cancer, and neurodegenerative disorders. Recent advancements in research techniques, including manual and automated patch clamp (APC) electrophysiology, solid-supported membrane-based electrophysiology (SSME), and fluorescence-based ion imaging, have further enhanced our ability to investigate lysosomal ion channels and transporters in both physiological and pathological conditions, spurring drug discovery efforts. Several pharmaceutical companies are now developing therapies aimed at modulating these channels and transporters to improve lysosomal function in disease. Small molecules targeting channels like transient receptor potential mucolipin (TRPML) 1 and TMEM175, as well as drugs modulating lysosomal pH, are currently in preclinical and clinical development. This review provides an overview of the role of lysosomal ion channels and transporters in health and disease, highlights the cutting-edge techniques used to study them, and discusses the therapeutic potential of targeting these channels and transporters in the treatment of various diseases. Furthermore, in addition to summarizing recent discoveries, we contribute novel functional data on cystinosin, TRPML1, and two-pore channel 2 (TPC2), utilizing both SSME and APC approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Nidish Ponath Sadanandan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Joanne L. Parker
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | | | - Abdou Rachid Thiam
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Arlene Kemp
- SB Drug Discovery a Sygnature Discovery Business, West of Scotland Science Park, Glasgow, UK
| | | | | | | | | | | | | | | | | | - David Dalrymple
- SB Drug Discovery a Sygnature Discovery Business, West of Scotland Science Park, Glasgow, UK
| | - Bruno Gasnier
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich/Frankfurt, Germany
| | | |
Collapse
|
5
|
Chen Z, Xu J, Hu P, Du W, Chen J, Zhang X, Zhou W, Gao J, Zhang Y, Dai B, Nie G, Hu J, Zhou L, Xu S, Chan H, Cheung W, Ruan Y, Qin L. Defective Cystic Fibrosis Transmembrane Conductance Regulator Accelerates Skeletal Muscle Aging by Impairing Autophagy/Myogenesis. J Cachexia Sarcopenia Muscle 2025; 16:e13708. [PMID: 39887939 PMCID: PMC11780116 DOI: 10.1002/jcsm.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 12/08/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Regenerative capacity of skeletal muscles decreases with age. Deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) is associated with skeletal muscle weakness as well as epithelial cell senescence. However, whether and how CFTR plays a role in skeletal muscle regeneration and aging were unclear. METHODS Vastus lateralis biopsy samples from male and female human subjects (n = 23) of 7- to 86-year-old and gastrocnemii tissues from mice of 4- to 29-month-old were examined for CFTR expression. Skeletal muscle tissues or cultured myoblasts from mice carrying CFTR mutation (DF508) at 4- to 18-month-old were used for assessment of muscle mass, contractile force and regenerative capacity as well as myogenic and autophagy signalling. Overexpression of LC3-β, an autophagy mediator, was conducted to reverse myogenic defects in DF508 myoblasts. Adenoviruses containing CFTR gene or pharmaceuticals that enhance CFTR (VX809) were locally injected into the gastrocnemius or femoris quadricep to rescue age-related skeletal muscle defects in mice. RESULTS mRNA levels of CFTR in human vastus lateralis exhibited significantly negative correlations with age (r = -0.87 in males and -0.62 in females, p < 0.05). Gastrocnemius mRNA level of CFTR decreased by 77.7 ± 4.6% in 29-month-old wild-type mice compared to the 4-month-old. At 18-month-old, DF508 mice showed significantly reduced lean mass (by 35.6%), lower specific twitch force of the gastrocnemius (by 46.2%), decrease in fast/slow-twitch muscle isoform ratio as well as downregulation of myogenic (e.g., MYOD and MYOG) or autophagy/mitophagy (e.g., LC3-β) genes, compared to age-matched wild-types. Post-injury gastrocnemius regeneration was found impaired in DF508 mice. Myoblast cultures from DF508 mice showed defective myogenic differentiation, which was reversed by overexpressing LC3-β. In aged (> 15-month-old) mice, overexpressing CFTR or VX809 restored the expression of autophagy or myogenic genes, increased mitochondrial LC3-β level and improved skeletal muscle mass and function. CONCLUSION Age-related reduction in skeletal muscle expression of CFTR impairs autophagy and myogenesis, exacerbating skeletal muscle aging. Enhancing CFTR might be a potential treatment strategy for age-related skeletal muscle disorders.
Collapse
Affiliation(s)
- Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Peijie Hu
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Wanting Du
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Junjiang Chen
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Xiaotian Zhang
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Wei Zhou
- State Key Laboratory of Respiratory Disease for Allergy Shenzhen Key Laboratory of Allergy & Immunology School of MedicineShenzhen UniversityShenzhenChina
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong KongChina
| | - Yuantao Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Guangshuai Nie
- Orthopaedic Research Centre, Department of OrthopaedicsThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Jun Hu
- Orthopaedic Research Centre, Department of OrthopaedicsThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Liangbin Zhou
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Hisao Chang Chan
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
| | - Wing‐hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Ye Chun Ruan
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
6
|
Scialò F, Cernera G, Polise L, Castaldo G, Amato F, Villella VR. Effect of CFTR Modulators on Oxidative Stress and Autophagy in Non-CFTR-Expressing Cells. Int J Mol Sci 2024; 25:10360. [PMID: 39408688 PMCID: PMC11476568 DOI: 10.3390/ijms251910360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The triple combination therapy for cystic fibrosis (CF), including elexacaftor, tezacaftor and ivacaftor (ETI or Trikafta), has been shown to improve lung function and reduce pulmonary exacerbations, thereby enhancing the quality of life for most CF patients. Recent findings suggest that both the individual components and ETI may have potential off-target effects, highlighting the need to understand how these modulators impact cellular physiology, particularly in cells that do not express CF transmembrane conductance regulator (CFTR). We used HEK293 cells, as a cell model not expressing the CFTR protein, to evaluate the effect of ETI and each of its components on autophagic machinery and on the Rab5/7 components of the Rab pathway. We firstly demonstrate that the single modulators Teza and Iva, and the combinations ET and ETI, increased ROS production in the absence of their target while decreasing it in cells expressing the CFTR ∆F508del. This increase in cellular stress was followed by an increase in the total level of polyubiquitinated proteins as well as the p62 level and LC3II/LC3I ratio. Furthermore, we found that ETI had the opposite effect on Rabs by increasing Rab5 levels while decreasing Rab7. Interestingly, these changes were abolished by the expression of mutated CFTR. Overall, our data suggest that in the absence of their target, both the individual modulators and ETI increased ROS production and halted both autophagic flux and plasma membrane protein recycling.
Collapse
Affiliation(s)
- Filippo Scialò
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (G.C.); (L.P.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
| | - Gustavo Cernera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (G.C.); (L.P.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
| | - Lorenza Polise
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (G.C.); (L.P.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (G.C.); (L.P.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
| | - Felice Amato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy; (G.C.); (L.P.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
| | | |
Collapse
|
7
|
Carbone A, Vitullo P, Di Gioia S, Castellani S, Conese M. A New Frontier in Cystic Fibrosis Pathophysiology: How and When Clock Genes Can Affect the Inflammatory/Immune Response in a Genetic Disease Model. Curr Issues Mol Biol 2024; 46:10396-10410. [PMID: 39329970 PMCID: PMC11430433 DOI: 10.3390/cimb46090618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome caused by variants in the CF Transmembrane Conductance Regulator (CFTR) gene, affecting various organ and systems, in particular the lung, pancreas, sweat glands, liver, gastrointestinal tract, vas deferens, and vascular system. While for some organs, e.g., the pancreas, a strict genotype-phenotype occurs, others, such as the lung, display a different pathophysiologic outcome in the presence of the same mutational asset, arguing for genetic and environmental modifiers influencing severity and clinical trajectory. CFTR variants trigger a pathophysiological cascade of events responsible for chronic inflammatory responses, many aspects of which, especially related to immunity, are not ascertained yet. Although clock genes expression and function are known modulators of the innate and adaptive immunity, their involvement in CF has been only observed in relation to sleep abnormalities. The aim of this review is to present current evidence on the clock genes role in immune-inflammatory responses at the lung level. While information on this topic is known in other chronic airway diseases (chronic obstructive pulmonary disease and asthma), CF lung disease (CFLD) is lacking in this knowledge. We will present the bidirectional effect between clock genes and inflammatory factors that could possibly be implicated in the CFLD. It must be stressed that besides sleep disturbance and its mechanisms, there are not studies directly addressing the exact nature of clock genes' involvement in inflammation and immunity in CF, pointing out the directions of new and deepened studies in this monogenic affection. Importantly, clock genes have been found to be druggable by means of genetic tools or pharmacological agents, and this could have therapeutic implications in CFLD.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
8
|
Anglès F, Gupta V, Wang C, Balch WE. COPII cage assembly factor Sec13 integrates information flow regulating endomembrane function in response to human variation. Sci Rep 2024; 14:10160. [PMID: 38698045 PMCID: PMC11065896 DOI: 10.1038/s41598-024-60687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.
Collapse
Affiliation(s)
- Frédéric Anglès
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Vijay Gupta
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Astuti Y, Raymant M, Quaranta V, Clarke K, Abudula M, Smith O, Bellomo G, Chandran-Gorner V, Nourse C, Halloran C, Ghaneh P, Palmer D, Jones RP, Campbell F, Pollard JW, Morton JP, Mielgo A, Schmid MC. Efferocytosis reprograms the tumor microenvironment to promote pancreatic cancer liver metastasis. NATURE CANCER 2024; 5:774-790. [PMID: 38355776 PMCID: PMC11136665 DOI: 10.1038/s43018-024-00731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Pancreatic ductal adenocarcinoma is a highly metastatic disease and macrophages support liver metastases. Efferocytosis, or engulfment of apoptotic cells by macrophages, is an essential process in tissue homeostasis and wound healing, but its role in metastasis is less well understood. Here, we found that the colonization of the hepatic metastatic site is accompanied by low-grade tissue injury and that efferocytosis-mediated clearance of parenchymal dead cells promotes macrophage reprogramming and liver metastasis. Mechanistically, progranulin expression in macrophages is necessary for efficient efferocytosis by controlling lysosomal acidification via cystic fibrosis transmembrane conductance regulator and the degradation of lysosomal cargo, resulting in LXRα/RXRα-mediated macrophage conversion and upregulation of arginase 1. Pharmacological blockade of efferocytosis or macrophage-specific genetic depletion of progranulin impairs macrophage conversion, improves CD8+ T cell functions, and reduces liver metastasis. Our findings reveal how hard-wired functions of macrophages in tissue repair contribute to liver metastasis and identify potential targets for prevention of pancreatic ductal adenocarcinoma liver metastasis.
Collapse
Affiliation(s)
- Yuliana Astuti
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Meirion Raymant
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Valeria Quaranta
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Kim Clarke
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Olivia Smith
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | - Craig Nourse
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Christopher Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Daniel Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Robert P Jones
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Fiona Campbell
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | - Jennifer P Morton
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Ma Q, Yu J, Liu L, Ma X, Zhang J, Zhang J, Wang X, Deng G, Wu X. TRAF6 triggers Mycobacterium-infected host autophagy through Rab7 ubiquitination. Cell Death Discov 2023; 9:427. [PMID: 38016969 PMCID: PMC10684575 DOI: 10.1038/s41420-023-01731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an E3 ubiquitin ligase that is extensively involved in the autophagy process by interacting with diverse autophagy initiation and autophagosome maturation molecules. However, whether TRAF6 interacts with lysosomal proteins to regulate Mycobacterium-induced autophagy has not been completely characterized. Herein, the present study showed that TRAF6 interacted with lysosomal key proteins Rab7 through RING domain which caused Rab7 ubiquitination and subsequently ubiquitinated Rab7 binds to STX17 (syntaxin 17, a SNARE protein that is essential for mature autophagosome), and thus promoted the fusion of autophagosomes and lysosomes. Furthermore, TRAF6 enhanced the initiation and formation of autophagosomes in Mycobacterium-induced autophagy in both BMDMs and RAW264.7 cells, as evidenced by autophagic flux, colocalization of LC3 and BCG, autophagy rates, and autophagy-associated protein expression. Noteworthy to mention, TRAF6 deficiency exacerbated lung injury and promoted BCG survival. Taken together, these results identify novel molecular and cellular mechanisms by which TRAF6 positively regulates Mycobacterium-induced autophagy.
Collapse
Affiliation(s)
- Qinmei Ma
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jialin Yu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Li Liu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Xiaoyan Ma
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jiaxue Zhang
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jiamei Zhang
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Xiaoping Wang
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, NingXia, 750021, China
| | - Guangcun Deng
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China.
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China.
| | - Xiaoling Wu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China.
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China.
| |
Collapse
|
11
|
Carbone A, Vitullo P, Di Gioia S, Conese M. Lung Inflammatory Genes in Cystic Fibrosis and Their Relevance to Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapies. Genes (Basel) 2023; 14:1966. [PMID: 37895314 PMCID: PMC10606852 DOI: 10.3390/genes14101966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome determined by over 2000 mutations in the CF Transmembrane Conductance Regulator (CFTR) gene harbored on chromosome 7. In people with CF (PWCF), lung disease is the major determinant of morbidity and mortality and is characterized by a clinical phenotype which differs in the presence of equal mutational assets, indicating that genetic and environmental modifiers play an important role in this variability. Airway inflammation determines the pathophysiology of CF lung disease (CFLD) both at its onset and progression. In this narrative review, we aim to depict the inflammatory process in CF lung, with a particular emphasis on those genetic polymorphisms that could modify the clinical outcome of the respiratory disease in PWCF. The natural history of CF has been changed since the introduction of CFTR modulator therapies in the clinical arena. However, also in this case, there is a patient-to-patient variable response. We provide an overview on inflammatory/immunity gene variants that affect CFLD severity and an appraisal of the effects of CFTR modulator therapies on the inflammatory process in lung disease and how this knowledge may advance the optimization of the management of PWCF.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
12
|
Bruscia EM. The effects of elexafactor/tezafactor/ivacaftor beyond the epithelium: spurring macrophages to fight infections. Eur Respir J 2023; 61:61/4/2300216. [PMID: 37003613 DOI: 10.1183/13993003.00216-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/25/2023] [Indexed: 04/03/2023]
|
13
|
Zhang S, Shrestha CL, Robledo-Avila F, Jaganathan D, Wisniewski BL, Brown N, Pham H, Carey K, Amer AO, Hall-Stoodley L, McCoy KS, Bai S, Partida-Sanchez S, Kopp BT. Cystic fibrosis macrophage function and clinical outcomes after elexacaftor/tezacaftor/ivacaftor. Eur Respir J 2023; 61:2102861. [PMID: 36265882 PMCID: PMC10066828 DOI: 10.1183/13993003.02861-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Abnormal macrophage function caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) is a critical contributor to chronic airway infections and inflammation in people with cystic fibrosis (PWCF). Elexacaftor/tezacaftor/ivacaftor (ETI) is a new CFTR modulator therapy for PWCF. Host-pathogen and clinical responses to CFTR modulators are poorly described. We sought to determine how ETI impacts macrophage CFTR function, resulting effector functions and relationships to clinical outcome changes. METHODS Clinical information and/or biospecimens were obtained at ETI initiation and 3, 6, 9 and 12 months post-ETI in 56 PWCF and compared with non-CF controls. Peripheral blood monocyte-derived macrophages (MDMs) were isolated and functional assays performed. RESULTS ETI treatment was associated with increased CF MDM CFTR expression, function and localisation to the plasma membrane. CF MDM phagocytosis, intracellular killing of CF pathogens and efferocytosis of apoptotic neutrophils were partially restored by ETI, but inflammatory cytokine production remained unchanged. Clinical outcomes including increased forced expiratory volume in 1 s (+10%) and body mass index (+1.0 kg·m-2) showed fluctuations over time and were highly individualised. Significant correlations between post-ETI MDM CFTR function and sweat chloride levels were observed. However, MDM CFTR function correlated with clinical outcomes better than sweat chloride. CONCLUSION ETI is associated with unique changes in innate immune function and clinical outcomes.
Collapse
Affiliation(s)
- Shuzhong Zhang
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin L Wisniewski
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Nevian Brown
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Hanh Pham
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine Carey
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Karen S McCoy
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin T Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Meoli A, Eickmeier O, Pisi G, Fainardi V, Zielen S, Esposito S. Impact of CFTR Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease. Int J Mol Sci 2022; 23:12421. [PMID: 36293274 PMCID: PMC9604330 DOI: 10.3390/ijms232012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches.
Collapse
Affiliation(s)
- Aniello Meoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Olaf Eickmeier
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Giovanna Pisi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
15
|
Jaganathan D, Bruscia EM, Kopp BT. Emerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis. Int J Mol Sci 2022; 23:7750. [PMID: 35887098 PMCID: PMC9319215 DOI: 10.3390/ijms23147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Chronic inflammation and decline in lung function are major reasons for morbidity in CF. Mutant CFTR expressed in phagocytic cells such as macrophages contributes to persistent infection, inflammation, and lung disease in CF. Macrophages play a central role in innate immunity by eliminating pathogenic microbes by a process called phagocytosis. Phagocytosis is required for tissue homeostasis, balancing inflammation, and crosstalk with the adaptive immune system for antigen presentation. This review focused on (1) current understandings of the signaling underlying phagocytic mechanisms; (2) existing evidence for phagocytic dysregulation in CF; and (3) the emerging role of CFTR modulators in influencing CF phagocytic function. Alterations in CF macrophages from receptor initiation to phagosome formation are linked to disease progression in CF. A deeper understanding of macrophages in the context of CFTR and phagocytosis proteins at each step of phagosome formation might contribute to the new therapeutic development of dysregulated innate immunity in CF. Therefore, the review also indicates future areas of research in the context of CFTR and macrophages.
Collapse
Affiliation(s)
- Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Benjamin T. Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| |
Collapse
|