1
|
Lin H, Sun J, Li H, Chen K, Qin Z, Jiang B, Li W, Wang Q, Su Y, Lin L, Liu C. Enhanced virulence of Acinetobacter johnsonii at low temperatures induces acute immune response and systemic infection in American bullfrogs (Aquarana catesbeiana). Vet Microbiol 2025; 302:110404. [PMID: 39874870 DOI: 10.1016/j.vetmic.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Acinetobacter johnsonii is a denitrifying bacterium commonly used as an environmental probiotic in wastewater treatment. However, research on its potential pathogenicity to animals is limited. During an epidemiological survey conducted from 2022 to 2024 at bullfrog farms in Guangdong Province, China, multiple strains were isolated from diseased bullfrogs during the low-temperature season. Three representative strains were selected for virulence testing, which showed high virulence to bullfrogs. Molecular identification confirmed these strains as A. johnsonii. One strain was named NW220314S and chosen for further study. Artificial infection through different routes revealed that the mortality rate of bullfrogs infected with this strain was higher at 15°C compared to 28°C. Additionally, the expression of at least 11 virulence genes was significantly higher at 15°C. Pathological examinations of bullfrogs infected with A. johnsonii showed systemic infection with extensive infiltration of inflammatory factors in organs, muscles, and skin. Immune-related gene expression analysis indicated a rapid and intense inflammatory response in bullfrogs post-infection. Our findings uncovered the novel phenomenon of the pathogenicity of A. johnsonii in bullfrogs under low-temperature conditions, warning of the potential threat of A. johnsonii to amphibian populations and the risks associated with its use in various environmental applications.
Collapse
Affiliation(s)
- Han Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jingyang Sun
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hua Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Kesong Chen
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhendong Qin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Biao Jiang
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wei Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qing Wang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province and Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Youlu Su
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Chun Liu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
2
|
Wen Z, Liu Z, Bu H, Liu Y, Zhu J, Hu F, Li Z, Huang B, Peng F. Metabolome and transcriptome unveil the mechanism of light on regulating beauvericin synthesis in Cordyceps chanhua. Fungal Biol 2024; 128:2102-2112. [PMID: 39384280 DOI: 10.1016/j.funbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 10/11/2024]
Abstract
Cordyceps chanhua, an important cordycipitoid medical mushroom with wide use in Asia, has gained attention for its bioactive component beauvericin (BEA), which is of medicinal value as a drug lead, but also of food safety risk. Recent observations by our group revealed a significant decrease of BEA content in C. chanhua when exposed to light, but the underlying regulatory mechanisms remain elusive. In this study, a comprehensive approach combining metabolomics and transcriptomics was employed to investigate the effects of white light on the secondary metabolism of C. chanhua for elucidation of the influence of light on BEA biosynthesis in this fungus. The result showed that the genes and metabolites involved in the synthesis of D-hydroxyisovaleric acid, a precursor of BEA synthesis, were down-regulated under light exposure, while those associated with the synthesis of phenylalanine, another precursor of BEA synthesis, were up-regulated leading to elevated phenylalanine levels. It suggested that the suppressive effect of light on BEA synthesis in C. chanhua occurred primarily through the inhibition of D-hydroxyisovaleric acid synthesis, while the enhanced phenylalanine biosynthesis likely directed towards other metabolic pathway such as pigment synthesis. These results contributed to a better understanding on how light modulates the secondary metabolism of C. chanhua and provided valuable guidance for optimizing BEA production in cultivation practices.
Collapse
Affiliation(s)
- Zhiyuan Wen
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Zhimin Liu
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Haifen Bu
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Yanwen Liu
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Jiahua Zhu
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Fenglin Hu
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Zengzhi Li
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Fan Peng
- Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
4
|
Chen Y, Xu L, Wang J. Characteristics of a Carbapenem-Resistant Acinetobacter baumannii Strain Causing Community-Acquired Pneumonia in a Young Healthy Women. Infect Drug Resist 2023; 16:7819-7826. [PMID: 38152553 PMCID: PMC10752029 DOI: 10.2147/idr.s439614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Background Multidrug-resistant Acinetobacter baumannii rarely causes community-acquired pneumonia. Here, we report the clinical and genomic characteristics of a multidrug-resistant A. baumannii strain responsible for community-acquired pneumonia in a 31-year-old healthy young women. Methods A. baumannii strain W2LL was recovered from the alveolar lavage fluid sample of a hospitalized patient with pulmonary infection. Growth rate studies were conducted under various conditions, and virulence assessments were performed using Galleria Mellonella larvae. Whole Genome Sequencing (WGS) was carried out using Oxford Nanopore MinIon and Illumina HiSeq. In silico multilocus sequence typing (MLST), plasmid replicons, antimicrobial resistance genes, and virulence genes were determined using the BacWGSTdb webserver. Phylogenetic analysis between strain W2LL and other closely related A. baumannii genomes retrieved from NCBI database was performed. Results WGS identified strain W2LL as a rare sporadic lineage sequence type (ST) 1431. In addition to the detection of the β-lactamase gene (blaOXA-98) on the chromosome, blaOXA-58 was found on a 92,034 bp plasmid. Antimicrobial susceptibility testing revealed this strain was resistant to cephalosporins and carbapenems, with initial treatment using cefoxitin proving ineffective. Subsequent treatment with piperacillin-sulbactam combined with levofloxacin led to gradual improvement. Compared to A. baumannii ATCC 17978, W2LL exhibited similar growth rates at 37°C and 42°C, as well as in the presence of zinc. However, strain W2LL exhibited higher virulence phenotype compared to ATCC 17978 in G. mellonella model. The closest relative of A. baumannii W2LL was CAM180_1, another isolate recovered from Cambodia, which differed by 191 SNPs. Conclusion W2LL is a rare ST1431 carbapenem-resistant A. baumannii strain recovered from a patient with no prior hospitalization or typical risk factors. This underscores the growing menace posed by carbapenem-resistant A. baumannii, no longer limited to hospitalized patients, potentially impacting the broader, younger population.
Collapse
Affiliation(s)
- Yan Chen
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Liqun Xu
- Department of Emergency Department, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianfeng Wang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Institute of Respiratory Diseases of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
5
|
Arana N, Perez Mora B, Permingeat V, Giordano R, Calderone M, Tuttobene M, Klinke S, Rinaldi J, Müller G, Mussi MA. Light regulation in critical human pathogens of clinical relevance such as Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. Photochem Photobiol Sci 2023; 22:2019-2036. [PMID: 37269546 DOI: 10.1007/s43630-023-00437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
It is now clearly recognized that light modulates the physiology of many bacterial chemotrophs, either directly or indirectly. An interesting case are bacterial pathogens of clinical relevance. This work summarizes, discusses, and provides novel complementary information to what is currently known about light sensing and responses in critical human pathogens such as Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus. These pathogens are associated with severe hospital and community infections difficult to treat due to resistance to multiple drugs. Moreover, light responses in Brucella abortus, an important animal and human pathogen, are also compiled. Evidence recovered so far indicates that light modulates aspects related to pathogenesis, persistence, and antibiotic susceptibility in these pathogens; such as motility, biofilm formation, iron uptake, tolerance to antibiotics, hemolysis and virulence. The pathogens elicit differential responses to light depending likely on their pathophysiology, ability to cause disease and characteristics of the host. The response to light is not restricted to discrete physiological traits but is global. In higher organisms, light provides spatial and temporal information. Then, it is crucial to understand what information light is providing in these bacterial pathogens. Our current hypothesis postulates that light serves as a signal that allows these pathogens to synchronize their behavior to the circadian rhythm of the host, to optimize infection. Advances on the molecular mechanism of light signal transduction and physiological responses to light, as well as in the relation between light and bacterial infection, would not only enlarge our understanding of bacterial pathogenesis but also could potentially provide alternative treatment options for infectious illnesses.
Collapse
Affiliation(s)
- Natalia Arana
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Bárbara Perez Mora
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Valentín Permingeat
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rocío Giordano
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Malena Calderone
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Marisel Tuttobene
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina.
| | - María Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina.
| |
Collapse
|
6
|
Blue Light Sensing BlsA-Mediated Modulation of Meropenem Resistance and Biofilm Formation in Acinetobacter baumannii. mSystems 2023; 8:e0089722. [PMID: 36622157 PMCID: PMC9948694 DOI: 10.1128/msystems.00897-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The presence or absence of BlsA, a protein with a blue light-sensing flavin domain in the genomes of Acinetobacter species has aroused curiosity about its roles in the regulation of bacterial lifestyle under light. Genomic and transcriptomic analyses revealed the loss of BlsA in several multidrug-resistant (MDR) A. baumannii strains as well as the light-mediated induction of blsA, along with a possible BlsA-interacting partner BipA. Their direct in vivo interactions were verified using a bacterial two-hybrid system. The results demonstrated that the C-terminal region of BipA could bind to the C-terminal residues of BlsA under blue light at 23°C but not at 37°C. Genetic manipulations of blsA and bipA revealed that the coexistence of BlsA and BipA was required to induce the light-dependent expression of ompA in A. baumannii ATCC 17978 at 23°C. The same phenomenon occurred in the BlsA-deficient MDR strain in our functional complementation assay; however, the underlying molecular mechanism remains poorly understood. BlsA-modulated amounts of OmpA, the most abundant porin, in the outer membrane affected the membrane integrity and permeability of small molecules. Dark conditions or the deletion of ompA made the membrane more permeable to lipophilic ethidium bromide (EtBr) but not to meropenem. Interestingly, light illumination and low temperature conditions made the cells more sensitive to meropenem; however, this bactericidal effect was not noted in the blsA mutant or in the BlsA-deficient MDR strains. Light-mediated cell death and the reduction of biofilm formation at 23°C were abolished in the blsA mutant strain, suggesting multifaceted roles of BlsA in A. baumannii strains. IMPORTANCE Little is known about the functional roles of BlsA and its interacting partners in Acinetobacter species. Intriguingly, no BlsA homolog was found in several clinical isolates, suggesting that BlsA was not required inside the host because of the lack of blue light and the warm temperature conditions. As many chromophore-harboring proteins interact with various partners to control light-dependent cellular behaviors, the maintenance of blsA in the genomes of many Acinetobacter species during their evolution may be beneficial when fluctuations occur in two important environmental factors: light and temperature. Our study is the first to report the novel protein partner of BlsA, namely, BipA, and its contribution to multiple phenotypic changes, including meropenem resistance and biofilm formation. Rapid physiological acclimation to changing light or temperature conditions may be possible in the presence of the light-sensing BlsA protein, which may have more interacting partners than expected.
Collapse
|