1
|
Dlozi. PN, Ahmed. R, Khoza. S, Dube A. Vitamin D3 loaded polycaprolactone nanoparticles enhance the expression of the antimicrobial peptide cathelicidin in macrophages. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:207-219. [PMID: 40327417 PMCID: PMC12057764 DOI: 10.1080/21691401.2025.2499515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025]
Abstract
Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis, remains a global health burden. Current antibiotic treatments are limited by adverse effects, poor adherence, and drug resistance, necessitating new therapeutic approaches. Recent studies highlight the role of vitamin D3 (VD3) in enhancing host immune responses against the mycobacterium via cathelicidin (an antimicrobial peptide) and autophagy activation. In this study, VD3-loaded poly-ƹ-caprolactone (PCL) nanoparticles (NPs) were synthesized to enhance cathelicidin expression in macrophages. NPs containing cholecalciferol, calcifediol, and calcitriol were synthesized using an emulsification solvent-evaporation technique. Average sizes of synthesized NPs ranged from 304.7 to 458.7 nm, with polydispersity index (PDI) and zeta potential (ZP) ranging from 0.103 to 0.257 and -17.3 to -7.47 mV, respectively. Encapsulation efficiencies were 9.68%, 10.99%, and 19.28% for cholecalciferol, calcifediol, and calcitriol, respectively. VD3-encapsulated NPs stimulated a dose-dependent increase in cathelicidin expression in THP-1 macrophages. Encapsulated calcifediol and calcitriol (100 ng/ml) induced the expression of 243.46 ng/ml ± 4.55 ng/ml and 396.67 ng/ml ± 25.24 ng/ml of cathelicidin, respectively, which was significantly higher than that induced by the free drugs. These findings suggest that NP encapsulation may offer a more efficient approach to using vitamin D3 for inducing cathelicidin expression as a host-directed treatment for TB.
Collapse
Affiliation(s)
- Prince N. Dlozi.
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa
| | - Rami Ahmed.
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa
| | - Star Khoza.
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa
| |
Collapse
|
2
|
Vidal M, Lane NE. Vitamin D and Its Role in Rheumatic Diseases. Metabolites 2025; 15:259. [PMID: 40278388 PMCID: PMC12029499 DOI: 10.3390/metabo15040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Vitamin D is a fat-soluble molecule with pleiotropic effects, acting as a steroid hormone on three main organs: the intestine, bone, and kidney. Among its best-known functions at the skeletal level are regulating bone metabolism and mineralization. In 1983, the presence of vitamin D receptors on the surface of immune cells was described, which led to the discovery of new functions on immunological and inflammatory processes. Currently, we know that vitamin D modulates the adaptative immune system by suppressing cells that produce inflammatory cytokines by downregulation, acting as an important regulator of immunity and the inflammatory response. In this article, we will review the synthesis, metabolic pathways, and the role of vitamin D in rheumatic autoimmune diseases.
Collapse
Affiliation(s)
- Maritza Vidal
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima 15036, Peru
| | - Nancy E. Lane
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
3
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
4
|
Guerra MES, Vieira B, Calazans APCT, Destro GV, Melo K, Rodrigues E, Waz NT, Girardello R, Darrieux M, Converso TR. Recent advances in the therapeutic potential of cathelicidins. Front Microbiol 2024; 15:1405760. [PMID: 38989014 PMCID: PMC11233757 DOI: 10.3389/fmicb.2024.1405760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
The alarming increase in antimicrobial resistance in the last decades has prompted the search for alternatives to control infectious diseases. Antimicrobial peptides (AMPs) represent a heterogeneous class of molecules with ample antibacterial, antiviral, and antifungal effects. They can be found in many organisms, including all classes of vertebrates, providing a valuable source of new antimicrobial agents. The unique properties of AMPs make it harder for microbes develop resistance, while their immunomodulatory properties and target diversity reinforce their translational use in multiple diseases, from autoimmune disorders to different types of cancer. The latest years have witnessed a vast number of studies evaluating the use of AMPs in therapy, with many progressing to clinical trials. The present review explores the recent developments in the medicinal properties of cathelicidins, a vast family of AMPs with potent antimicrobial and immunomodulatory effects. Cathelicidins from several organisms have been tested in disease models of viral and bacterial infections, inflammatory diseases, and tumors, with encouraging results. Combining nanomaterials with active, natural antimicrobial peptides, including LL-37 and synthetic analogs like ceragenins, leads to the creation of innovative nanoagents with significant clinical promise. However, there are still important limitations, such as the toxicity of many cathelicidins to healthy host cells and low stability in vivo. The recent advances in nanomaterials and synthetic biology may help overcome the current limitations, enabling the use of cathelicidins in future therapeutics. Furthermore, a better understanding of the mechanisms of cathelicidin action in vivo and their synergy with other host molecules will contribute to the development of safer, highly effective therapies.
Collapse
|
5
|
Talafha MM, Qasem A, Naser SA. Mycobacterium avium paratuberculosis Infection Suppresses Vitamin D Activation and Cathelicidin Production in Macrophages through Modulation of the TLR2-Dependent p38/MAPK-CYP27B1-VDR-CAMP Axis. Nutrients 2024; 16:1358. [PMID: 38732603 PMCID: PMC11085596 DOI: 10.3390/nu16091358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Vitamin D plays a vital role in modulating both innate and adaptive immune systems. Therefore, vitamin D deficiency has been associated with higher levels of autoimmune response and increased susceptibility to infections. CYP27B1 encodes a member of the cytochrome P450 superfamily of enzymes. It is instrumental in the conversion of circulating vitamin D (calcifediol) to active vitamin D (calcitriol). This is a crucial step for macrophages to express Cathelicidin Anti-microbial Peptide (CAMP), an anti-bacterial factor released during the immune response. Our recent study indicated that a Crohn's disease (CD)-associated pathogen known as Mycobacterium avium paratuberculosis (MAP) decreases vitamin D activation in macrophages, thereby impeding cathelicidin production and MAP infection clearance. The mechanism by which MAP infection exerts these effects on the vitamin D metabolic axis remains elusive. METHODS We used two cell culture models of THP-1 macrophages and Caco-2 monolayers to establish the effects of MAP infection on the vitamin D metabolic axis. We also tested the effects of Calcifediol, Calcitriol, and SB203580 treatments on the relative expression of the vitamin D metabolic genes, oxidative stress biomarkers, and inflammatory cytokines profile. RESULTS In this study, we found that MAP infection interferes with vitamin D activation inside THP-1 macrophages by reducing levels of CYP27B1 and vitamin D receptor (VDR) gene expression via interaction with the TLR2-dependent p38/MAPK pathway. MAP infection exerts its effects in a time-dependent manner, with the maximal inhibition observed at 24 h post-infection. We also demonstrated the necessity to have toll-like receptor 2 (TLR2) for MAP infection to influence CYP27B1 and CAMP expression, as TLR2 gene knockdown resulted in an average increase of 7.78 ± 0.88 and 13.90 ± 3.5 folds in their expression, respectively. MAP infection also clearly decreased the levels of p38 phosphorylation and showed dependency on the p38/MAPK pathway to influence the expression of CYP27B1, VDR, and CAMP which was evident by the average fold increase of 1.93 ± 0.28, 1.86 ± 0.27, and 6.34 ± 0.51 in their expression, respectively, following p38 antagonism. Finally, we showed that calcitriol treatment and p38/MAPK blockade reduce cellular oxidative stress and inflammatory markers in Caco-2 monolayers following macrophage-mediated MAP infection. CONCLUSIONS This study characterized the primary mechanism by which MAP infection leads to diminished levels of active vitamin D and cathelicidin in CD patients, which may explain the exacerbated vitamin D deficiency state in these cases.
Collapse
Affiliation(s)
| | | | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; (M.M.T.); (A.Q.)
| |
Collapse
|
6
|
Figgins EL, Arora P, Gao D, Porcelli E, Ahmed R, Daep CA, Keele G, Ryan LK, Diamond G. Enhancement of innate immunity in gingival epithelial cells by vitamin D and HDAC inhibitors. FRONTIERS IN ORAL HEALTH 2024; 5:1378566. [PMID: 38567313 PMCID: PMC10986367 DOI: 10.3389/froh.2024.1378566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The human host defense peptide LL-37 is a component of the innate immune defense mechanisms of the oral cavity against colonization by microbes associated with periodontal disease. We have previously shown that the active form of vitamin D, 1,25(OH)2D3, can induce the expression of LL-37 in gingival epithelial cells (GEC), and prevent the invasion and growth of periopathogenic bacteria in these cells. Further, experimental vitamin D deficiency resulted in increased gingival inflammation and alveolar bone loss. Epidemiological studies have shown associations between vitamin D deficiency and periodontal disease in humans, suggesting application of vitamin D could be a useful therapeutic approach. Further, since we have shown the local activation of vitamin D by enzymes expressed in the GEC, we hypothesized that we could observe this enhancement with the stable, and inexpensive inactive form of vitamin D, which could be further increased with epigenetic regulators. Methods We treated 3-dimensional primary cultures of GEC topically with the inactive form of vitamin D, in the presence and absence of selected histone deacetylase (HDAC) inhibitors. LL-37 mRNA levels were quantified by quantitative RT-PCR, and inhibition of invasion of bacteria was measured by fluorescence microscopy. Results Vitamin D treatment led to an induction of LL-37 mRNA levels, as well as an inhibition of pro-inflammatory cytokine secretion. This effect was further enhanced by HDAC inhibitors, most strongly when the HDAC inhibitor, phenyl butyrate (PBA) was combined with Vitamin D3. This was observed both in solution and in a prototype gel formulation using sodium butyrate. Finally, this combination treatment led to an increase in the antimicrobial activity against infection by Porphyromonas gingivalis and Filifactor alocis, bacteria associated with periodontal lesions, as well as herpes simplex virus, which has also been shown to be associated with periodontal lesions. Conclusions Our results demonstrate that a combination of inactive vitamin D and sodium butyrate could be developed as a safe treatment for periodontal disease.
Collapse
Affiliation(s)
- Erika L. Figgins
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Payal Arora
- Global Technology Center, Colgate Palmolive Company, Piscataway, NJ, United States
| | - Denny Gao
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Emily Porcelli
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
| | - Rabab Ahmed
- Global Technology Center, Colgate Palmolive Company, Piscataway, NJ, United States
| | - Carlo Amorin Daep
- Global Technology Center, Colgate Palmolive Company, Piscataway, NJ, United States
| | - Garrett Keele
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Lisa K. Ryan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Gill Diamond
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, United States
| |
Collapse
|
7
|
Zhang H, Yuan X, Yang Y, Wanyan Y, Tao L, Chen Y. Cathelicidin LL-37 promotes EMT, migration and metastasis of hepatocellular carcinoma cells in vitro and mouse model. Cell Adh Migr 2023; 17:20-34. [PMID: 36656313 PMCID: PMC9858423 DOI: 10.1080/19336918.2023.2168231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The effect of cathelicidin hCAP18/LL-37 in hepatocellular carcinoma (HCC) metastasis remains unclear. Here, we confirmed that LL-37 expression enhanced endothelial-mesenchymal transition (EMT), migration and invasion in HCC cells. And the HER2/EGFR-MAPK/ERK signal participated in the process above. More frequent lung metastases were observed in an LL-37-overexpressing hematogenous metastasis model. Interestingly, 1,25(OH)2D3 together with si-LL-37 significantly enhanced 1,25(OH)2D3-induced inhibition of migration and invasion in PLC/PRF-5 cells, and also enhanced reversion of the EMT process. Therefore, LL-37 is involved in HCC metastases, and may act as an important factor to attenuate the inhibitory activity of 1,25(OH)2D3 on HCC metastasis. Targeting hCAP18/LL-37 may offer a potential strategy to improve the anticancer activity of 1,25(OH)2D3 in HCC therapy.
Collapse
Affiliation(s)
- Huidan Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xueli Yuan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yaxin Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yangke Wanyan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Liping Tao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yuqing Chen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China,CONTACT Yuqing Chen Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, 1# Wenyuan Rd, Nanjing210000, Jiangsu Province, PR China
| |
Collapse
|
8
|
Somoza-Moncada MM, Turrubiates-Hernández FJ, Muñoz-Valle JF, Gutiérrez-Brito JA, Díaz-Pérez SA, Aguayo-Arelis A, Hernández-Bello J. Vitamin D in Depression: A Potential Bioactive Agent to Reduce Suicide and Suicide Attempt Risk. Nutrients 2023; 15:1765. [PMID: 37049606 PMCID: PMC10097210 DOI: 10.3390/nu15071765] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Suicide is one of the leading causes of death worldwide. According to the World Health Organization (WHO), every year, more than 700 thousand people die from this cause. Therefore, suicide is a public health issue. The complex interaction between different factors causes suicide; however, depression is one of the most frequent factors in people who have attempted suicide. Several studies have reported that vitamin D deficiency may be a relevant risk factor for depression, and vitamin D supplementation has shown promising effects in the adjunctive treatment of this mood disorder. Among the beneficial mechanisms of vitamin D, it has been proposed that it may enhance serotonin synthesis and modulate proinflammatory cytokines since low serotonin levels and systemic inflammation have been associated with depression and suicide. The present narrative review shows the potential pathogenic role of vitamin D deficiency in depression and suicide and the potential benefits of vitamin D supplementation to reduce their risk.
Collapse
Affiliation(s)
- María Montserrat Somoza-Moncada
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Francisco Javier Turrubiates-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Jesús Alberto Gutiérrez-Brito
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Saúl Alberto Díaz-Pérez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Adriana Aguayo-Arelis
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|