1
|
Shang C, Ji S, Hao W, Wei X, Yu J, Liu J, Zhang B. Changes in the metabolome, lipidomein, and gut microbiota in Behçet's disease. Front Cell Dev Biol 2025; 13:1530996. [PMID: 40235731 PMCID: PMC11997388 DOI: 10.3389/fcell.2025.1530996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 04/17/2025] Open
Abstract
Backgrounds There is growing evidence that autoimmune illnesses are associated with the metabolome and microbiota. Because Behçet's disease (BD) is not often diagnosed as a systemic disorder, the aim of this research was to investigate changes in gut flora and metabolites in BD patients. Methods We used 16S rRNA gut microbiota gene sequencing and UPLC-QTOF-MS analysis to gather stool and serum samples from 12 age-matched healthy controls and 17 BD patients. The correlation between changes in gut microbiota and metabolites was then further analyzed. Results In contrast to healthy controls, our investigation revealed significant changes in the makeup of gut flora in BD patients. In particular, we observed that in the BD group, there was a large drop in clostridia but a noticeable rise in γ-proteobacteria and betaproteobacteria. The serum metabolomics profiles of BD patients and healthy controls may be reliably differentiated using unsupervised principal component analysis (PCA). Several metabolites, including L-phenylalaine, tricarballylic acid, beta-leucine, ketoleucine, ascorbic acid, l-glutamic acid, l-malic acid, d-glucopyranuronic acid, and methyl acetoacetate, were found to have differential expression between BD patients and healthy controls. All of these metabolites were significantly lower in the BD group. Furthermore, we discovered strong associations between the detected metabolites such as tricarballylic acid, L-malic acid, D-glucopyranuronic acid with certain microbial families, such Prevotellaceae and Alcaligenaceae. Conclusion Patients with BD were found to have significant changes in the makeup of their gut flora and metabolites.
Collapse
Affiliation(s)
- Chen Shang
- Department of Rheumatology and immunology, Xuzhou First People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sujuan Ji
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People’s Hospital, Institute of Eye Disease Prevention and Treatment of Xuzhou, Xuzhou, Jiangsu, China
| | - Wenting Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyu Wei
- Department of Rheumatology and immunology, Xuzhou First People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiani Yu
- Department of Rheumatology and immunology, Xuzhou First People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiayi Liu
- Department of Rheumatology and immunology, Xuzhou First People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Baoguo Zhang
- Department of Rheumatology and immunology, Xuzhou First People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Yang Q, Kang Y, Tang W, Li M, Zhao C. Interplay of gut microbiota in Kawasaki disease: role of gut microbiota and potential treatment strategies. Future Microbiol 2025; 20:357-369. [PMID: 40013895 PMCID: PMC11938985 DOI: 10.1080/17460913.2025.2469432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Kawasaki disease (KD) is an acute systemic immune vasculitis with predominant involvement of the medium and small arteries. It mostly affects pediatric patients, representing the most common form of pediatric vasculitis in children less than 5 years old. Numerous diseases, especially those related to the immune system, have established links with the intestinal flora. Recent studies have investigated the intestinal flora changes throughout the management of KD. There was gut microbiota dysbiosis in pediatric KD at the acute phase, particularly the downregulation of short-chain fat acids-producing microbiota and the over-proliferation of opportunistic pathogens. The relationship between the response to therapies in individuals with KD and specific microbiota remains uncertain. Targeted microbial supplements and dietary regulation may serve as potential measures to alleviate KD complications and thus improve prognosis. This review provides an overview of the current understanding of the interplay of the gut microbiota and KD. Furthermore, it discusses the possibility of altering the gut microbiota to reinstate a healthy condition.
Collapse
Affiliation(s)
- Qing Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yaqing Kang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Tang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Tao E, Lang D. Unraveling the gut: the pivotal role of intestinal mechanisms in Kawasaki disease pathogenesis. Front Immunol 2024; 15:1496293. [PMID: 39664384 PMCID: PMC11633670 DOI: 10.3389/fimmu.2024.1496293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Kawasaki disease (KD), an acute systemic vasculitis that primarily affects children under 5 years of age, is the leading cause of acquired heart disease in this age group. Recent studies propose a novel perspective on KD's etiology, emphasizing the gastrointestinal (GI) tract, particularly the role of gut permeability. This review delves into how disruptions in gut barrier function trigger systemic inflammatory responses, exacerbate vascular inflammation, and contribute to coronary artery aneurysms. Evidence suggests that children with KD often exhibit increased gut permeability, leading to an imbalance in gut immunity and subsequent gut barrier damage. These changes impact vascular endothelial cells, promoting platelet aggregation and activation, thereby advancing severe vascular complications, including aneurysms. Additionally, this review highlights the correlation between GI symptoms and increased resistance to standard treatments like intravenous immunoglobulin (IVIG), indicating that GI involvement may predict therapeutic outcomes. Advocating for a new paradigm, this review calls for integrated research across gastroenterology, immunology, and cardiology to examine KD through the lens of GI health. The goal is to develop innovative therapeutic interventions targeting the intestinal barrier, potentially revolutionizing KD management and significantly improving patient outcomes.
Collapse
Affiliation(s)
- Enfu Tao
- Department of Neonatology and Neonatal Intensive Care Unit (NICU), Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang, China
| | - Dandan Lang
- Department of Pediatrics, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Chen S, Nie R, Wang C, Luan H, Ma X, Gui Y, Zeng X, Yuan H. A two sample mendelian randomization analysis investigates causal effects between gut microbiome and immune related Vasculitis. Sci Rep 2024; 14:18810. [PMID: 39138194 PMCID: PMC11322650 DOI: 10.1038/s41598-024-68205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Observational data suggest a link between gut microbiota and immune-related vasculitis, but causality remains unclear. A bidirectional mendelian randomization study was conducted using public genome-wide data. The inverse-variance-weighted (IVW) method identified associations and addressed heterogeneity.Families Clostridiaceae 1 and Actinomycetaceae correlated positively with granulomatosis with polyangiitis risk, while classes Lentisphaeria and Melainabacteria, and families Lachnospiraceae and Streptococcaceae showed negative associations. Behçet's disease was positively associated with the risk of family Streptococcaceae abundance. And other several gut microbiota constituents were identified as potential risk factors for immune-related vasculitis. Furthermore, combining positive association results from the IVW analysis revealed numerous shared gut microbiota constituents associated with immune-related vasculitis. MR analysis demonstrated a causal association between the gut microbiota and immune-related vasculitis, offering valuable insights for subsequent mechanistic and clinical investigations into microbiota-mediated immune-related vasculitis.
Collapse
Affiliation(s)
- Si Chen
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Rui Nie
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Chao Wang
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Haixia Luan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Xu Ma
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Yuan Gui
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Xiaoli Zeng
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China.
| | - Hui Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
5
|
Li YN, Chen T, Xue Y, Jia JY, Yan TK, Xu PC. Causal relationship between gut microbiota and Behçet's disease: a Mendelian randomization study. Front Microbiol 2024; 15:1416614. [PMID: 38933023 PMCID: PMC11201155 DOI: 10.3389/fmicb.2024.1416614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Background While observational epidemiological studies have suggested an association between gut microbiota and Behçet's disease (BD), the causal relationship between the two remains uncertain. Methods Statistical data were obtained from gut microbiome Genome-Wide Association Studies (GWAS) published by the MiBioGen consortium, and genetic variation points were screened as instrumental variables (IV). Mendelian randomization (MR) study was performed using inverse variance weighted (IVW), weighted median, MR-Egger regression, simple mode, and weighted mode methods to evaluate the causal relationship between gut microbiota (18,340 individuals) and BD (317,252 individuals). IVW was the main method of analysis. The stability and reliability of the results were verified using the leave-one-out method, heterogeneity test, and horizontal genetic pleiotropy test. Finally, a reverse MR analysis was performed to explore reverse causality. Results Inverse variance weighted (IVW) results showed that the genus Parasutterella (OR = 0.203, 95%CI 0.055-0.747, p = 0.016), Lachnospiraceae NC2004 group (OR = 0.101, 95%CI 0.015-0.666, p = 0.017), Turicibacter (OR = 0.043, 95%CI 0.007-0.273, p = 0.001), and Erysipelatoclostridium (OR = 0.194, 95%CI 0.040-0.926, p = 0.040) were protective factors against BD, while Intestinibacter (OR = 7.589, 95%CI 1.340-42.978, p = 0.022) might be a risk factor for BD. Conclusion Our study revealed the causal relationship between gut microbiota and BD. The microbiota that related to BD may become new biomarkers; provide new potential indicators and targets for the prevention and treatment of BD.
Collapse
Affiliation(s)
- Yu-Nan Li
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Xue
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun-Ya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tie-Kun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Cheng Xu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Nkeck JR, Tchuisseu-Kwangoua AL, Pelda A, Tamko WC, Hamadjoda S, Essama DB, Fojo B, Niasse M, Diallo S, Ngandeu-Singwé M. Current Approaches to Prevent or Reverse Microbiome Dysbiosis in Chronic Inflammatory Rheumatic Diseases. Mediterr J Rheumatol 2024; 35:220-233. [PMID: 39211023 PMCID: PMC11350408 DOI: 10.31138/mjr.240224.cap] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 09/04/2024] Open
Abstract
Advances in knowledge of the microbiome and its relationship with the immune system have led to a better understanding of the pathogenesis of chronic inflammatory rheumatic diseases (CIRD). Indeed, the microbiome dysbiosis now occupies a particular place with implications for the determinism and clinical expression of CIRD, as well as the therapeutic response of affected patients. Several approaches exist to limit the impact of the microbiome during CIRD. This review aimed to present current strategies to prevent or reverse microbiome dysbiosis based on existing knowledge, in order to provide practical information to healthcare professionals treating patients suffering from CIRD.
Collapse
Affiliation(s)
- Jan René Nkeck
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Ange Larissa Tchuisseu-Kwangoua
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Adeline Pelda
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Wilson Chia Tamko
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Saquinatou Hamadjoda
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Doris Bibi Essama
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Baudelaire Fojo
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Moustapha Niasse
- Department of Rheumatology, Dantec Teaching Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Saïdou Diallo
- Department of Rheumatology, Dantec Teaching Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Madeleine Ngandeu-Singwé
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| |
Collapse
|
7
|
Wu M, Liao Z, Zeng K, Jiang Q. Exploring the causal role of gut microbiota in giant cell arteritis: a Mendelian randomization analysis with mediator insights. Front Immunol 2024; 14:1280249. [PMID: 38239360 PMCID: PMC10794469 DOI: 10.3389/fimmu.2023.1280249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Background Giant Cell Arteritis (GCA) is a complex autoimmune condition. With growing interest in the role of gut microbiota in autoimmune diseases, this research aimed to explore the potential causal relationship between gut microbiota and GCA, and the mediating effects of specific intermediaries. Methods Using a bidirectional two-sample Mendelian randomization (MR) design, we investigated associations between 191 microbial taxa and GCA. A two-step MR technique discerned the significant mediators on this relationship, followed by Multivariable MR analyses to quantify the direct influence of gut microbiota on GCA and mediation effect proportion, adjusting for these mediators. Results Nine taxa displayed significant associations with GCA. Among them, families like Bacteroidales and Clostridiaceae1 had Odds Ratios (OR) of 1.48 (p=0.043) and 0.52 (p=5.51e-3), respectively. Genera like Clostridium sensu stricto1 and Desulfovibrio showed ORs of 0.48 (p=5.39e-4) and 1.48 (p=0.037), respectively. Mediation analyses identified 25 hydroxyvitamin D level (mediation effect of 19.95%), CD14+ CD16- monocyte counts (mediation effect of 27.40%), and CD4+ T cell counts (mediation effect of 28.51%) as significant intermediaries. Conclusion Our findings provide invaluable insights into the complex interplay between specific gut microbiota taxa and GCA. By highlighting the central role of gut microbiota in influencing GCA risk and long-term recurrence, and their interactions with vital immune mediators, this research paves the way for potential therapeutic interventions in GCA management.
Collapse
Affiliation(s)
- Menglin Wu
- Department of Cardiology, Zhangjiajie People’s Hospital, Zhangjiajie, China
| | - Zhixiong Liao
- Department of Cardiology, Zhangjiajie People’s Hospital, Zhangjiajie, China
| | - Kaidong Zeng
- Department of Cardiology, Zhangjiajie People’s Hospital, Zhangjiajie, China
| | - Qiaohui Jiang
- Department of Cardiology, The Second People’s Hospital of Neijiang, Neijiang, China
| |
Collapse
|
8
|
Deshayes S, Baugé C, Dupont PA, Simard C, Rida H, de Boysson H, Manrique A, Aouba A. [ 18F]FDG PET-MR characterization of aortitis in the IL1rn -/- mouse model of giant-cell arteritis. EJNMMI Res 2023; 13:103. [PMID: 38019303 PMCID: PMC10687326 DOI: 10.1186/s13550-023-01039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/01/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Metabolic imaging is routinely used to demonstrate aortitis in patients with giant-cell arteritis. We aimed to investigate the preclinical model of aortitis in BALB/c IL1rn-/- mice using [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography-magnetic resonance (PET-MR), gamma counting and immunostaining. We used 15 first-generation specific and opportunistic pathogen-free (SOPF) 9-week-old IL1rn-/- mice, 15 wild-type BALB/cAnN mice and 5 s-generation specific pathogen-free (SPF) 9-week-old IL1rn-/-. Aortic [18F]FDG uptake was assessed as the target-to-background ratio (TBR) using time-of-flight MR angiography as vascular landmarks. RESULTS [18F]FDG uptake measured by PET or gamma counting was similar in the first-generation SOPF IL1rn-/- mice and the wild-type group (p > 0.05). However, the first-generation IL1rn-/- mice exhibited more interleukin-1β (p = 0.021)- and interleukin-6 (p = 0.019)-positive cells within the abdominal aorta than the wild-type mice. In addition, the second-generation SPF group exhibited significantly higher TBR (p = 0.0068) than the wild-type mice on the descending thoracic aorta, unlike the first-generation SOPF IL1rn-/- mice. CONCLUSIONS In addition to the involvement of interleukin-1β and -6 in IL1rn-/- mouse aortitis, this study seems to validate [18F]FDG PET-MR as a useful tool for noninvasive monitoring of aortitis in this preclinical model.
Collapse
Affiliation(s)
- Samuel Deshayes
- Department of Internal Medicine and Clinical Immunology, Normandie University, UNICAEN, CHU de Caen Normandie - Université Basse Normandie, Avenue de la Côte de Nacre, 14000, CAEN, France.
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France.
| | - Caroline Baugé
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France
| | | | - Christophe Simard
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France
| | - Hanan Rida
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France
| | - Hubert de Boysson
- Department of Internal Medicine and Clinical Immunology, Normandie University, UNICAEN, CHU de Caen Normandie - Université Basse Normandie, Avenue de la Côte de Nacre, 14000, CAEN, France
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France
| | - Alain Manrique
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France
- Department of Nuclear Medicine, Normandie University, UNICAEN, CHU de Caen Normandie, Caen, France
| | - Achille Aouba
- Department of Internal Medicine and Clinical Immunology, Normandie University, UNICAEN, CHU de Caen Normandie - Université Basse Normandie, Avenue de la Côte de Nacre, 14000, CAEN, France.
- Normandie University, UNICAEN, CHU de Caen Normandie, UR4650 PSIR, Caen, France.
| |
Collapse
|
9
|
Reynolds G. Rheumatic complications of checkpoint inhibitors: Lessons from autoimmunity. Immunol Rev 2023; 318:51-60. [PMID: 37435963 PMCID: PMC10952967 DOI: 10.1111/imr.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Immune checkpoint inhibitors are now an established treatment in the management of a range of cancers. Their success means that their use is likely to increase in future in terms of the numbers of patients treated, the indications and the range of immune checkpoints targeted. They function by counteracting immune evasion by the tumor but, as a consequence, can breach self-tolerance at other sites leading to a range of immune-related adverse events. Included among these complications are a range of rheumatologic complications, including inflammatory arthritis and keratoconjunctivitis sicca. These superficially resemble immune-mediated rheumatic diseases (IMRDs) such as rheumatoid arthritis and Sjogren's disease but preliminary studies suggest they are clinically and immunologically distinct entities. However, there appear to be common processes that predispose to the development of both that may inform preventative interventions and predictive tools. Both groups of conditions highlight the centrality of immune checkpoints in controlling tolerance and how it can be restored. Here we will discuss some of these commonalities and differences between rheumatic irAEs and IMRDs.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
- Center for Immunology and Inflammatory DiseasesMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
10
|
Bettiol A, Emmi G, Low L, Sofi F, Wallace GR. Microbiome in Behcet's syndrome. Clin Immunol 2023; 250:109304. [PMID: 37003591 DOI: 10.1016/j.clim.2023.109304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
This review will discuss the current understanding of the role of microbiomes in Behcet's Syndrome, their influence on immune response and disease and potential future studies.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Liying Low
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Graham R Wallace
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|