1
|
Zhou P, Ma X, Scalia S, Toskic D, Wu X, Fogaren T, Lyons NC, del Pozo-Yauner L, Comenzo R. Heterohybridomas producing human immunoglobulin light chains using CD138-selected bone marrow cells. Biochem Biophys Rep 2025; 42:102017. [PMID: 40330075 PMCID: PMC12051113 DOI: 10.1016/j.bbrep.2025.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/14/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Background Light chain research is hampered by lack of mammalian cell lines producing human light chains (FLC). Therefore, we used heterohybridoma (HH) technology to produce clones making FLC thereby providing tools to study light chain behavior. Methods Marrow CD138+ cells from patients with multiple myeloma (MM) and polyclonal gammopathy (PG) were selected, fused with B5-6 T cells and cultured in hypoxanthine-aminopterin-thymidine medium (HAT). HH clones were selected based on ELISA for human immunoglobulins and flow cytometry for intracellular (IC) FLC. We compared marrow cell counts and HH yields by diagnosis, evaluated clones making only FLC by flow and by dimer/monomer (D/M) ratios in vitro and in vivo, and sequenced FLC genes with RT-PCR. Results Marrows from 13 patients with active disease, 10 MM and 3 PG, were no different in mononuclear or CD138-selected cell counts. HH FLC clones (7 λ, 1 κ) were obtained from 5/10 MM and 2/3 PG; one PG case produced 2 HH FLC clones (one λ and one κ). Of the 10 MM cases, 8 had high risk cytogenetic features and 4 of the 8 produced HH clones while of the 3 PG cases 2 had negative cytogenetics and 1 had loss of IgH identified and produced an HH clone. Mononuclear (MNC) and CD138-selected cell numbers were markedly higher in the samples that enabled productive fusions. Median MFI for the 8 HH clones by IC flow for FLC was 9849 (range, 5344-27451) and median percentage of cells IC positive was 88 % (69-95). Medians of in vitro and in vivo FLC production were 47 μg/mL (9-80) per million cells after 2 days of culture and 66.4 μg/mL (16-1100) in NOD-SCID γ (NSG) mice 14 days after intraperitoneal (IP) implants of 2 × 106 HH cells. Dimer/monomer ratio medians were 0.575 (0.08-0.939) in vitro and 0.91 (0.82-2.7) in vivo, values that were correlated (R2 = 0.565) by two-tailed paired t-test with P < 0.05. Conclusions B5-6 T HH producing human FLC were obtained from 50 % of MM and PG cases. High numbers of MNC and CD138+ cells enabled productive fusions. The HH clones produced FLC with easily appreciated dimers and monomers in vitro and in vivo. With IP in vivo implants after 2 weeks more dimers were seen than in short term cultures in vitro. These HH clones will be made available for study of FLC metabolism and testing of therapeutics designed to abrogate FLC production or enable FLC clearance in vivo.
Collapse
Affiliation(s)
- P. Zhou
- Tufts Medicine Myeloma and Amyloid Program, USA
| | - X. Ma
- Tufts Medicine Myeloma and Amyloid Program, USA
| | - S. Scalia
- Tufts Medicine Myeloma and Amyloid Program, USA
| | - D. Toskic
- Tufts Medicine Myeloma and Amyloid Program, USA
| | - X. Wu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - T. Fogaren
- Tufts Medicine Myeloma and Amyloid Program, USA
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Nancy Coady Lyons
- Tufts Medicine Myeloma and Amyloid Program, USA
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | | | - R.L. Comenzo
- Tufts Medicine Myeloma and Amyloid Program, USA
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
Brunel J, Paganini J, Galloux M, Charvet B, Perron H. HERV-W ENV transcription in B cells predicting symptomatic COVID-19 and risk for long COVID can express a full-length protein despite stop codon in mRNA from chromosome X via a ribosome readthrough. Microbes Infect 2024:105431. [PMID: 39419470 DOI: 10.1016/j.micinf.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The human genome comprises 8 % of endogenous retroviruses (HERVs). Though HERVS contribute to physiological functions, copies retained pathogenic potential. The HERV-W ENV protein was shown expressed in patients with worse COVID-19 symptoms and post-COVID syndrome. A significant detection of the mRNA encoding HERV-W ENV from patients with COVID-19 in B cells from RNAseq reads obtained from peripheral blond mononuclear cells. This data stratified with increased COVID-19 symptoms or with post-acute sequelae of COVID-19 (long COVID) after 3 months. The HERV-W ENV-U3R RNA was confirmed to display the best alignment with chromosome X ERVWE2 locus. However, a stop codon precluding its translation was re-addressed after recent understandings of ribosome readthrough mechanisms. Experimental results evidenced that this HERV gene can effectively express a full-length protein in the presence of molecules allowing translation via a readthrough mechanism at the ribosome level. Results not only confirm HERV-W ENV RNA origin in these patients but show for the first time how a defective HERV copy can be translated into a complete protein when specific factors make it possible at the ribosome level. The present proof of concept now requires further studies to identify the factors involved in this newly understood mechanism, following SARS-CoV-2 exposure.
Collapse
Affiliation(s)
- Joanna Brunel
- GeNeuro Innovation, 60A Avenue Rockefeller, 69008, Lyon, France
| | | | | | | | - Hervé Perron
- GeNeuro Innovation, 60A Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
3
|
Boni A, Nicolai R, Caiello I, Marinaro F, Farina L, Pires Marafon D, Carsetti R, De Benedetti F, Bracaglia C, Marasco E. Hyperactivation and altered selection of B cells in patients with paediatric Sjogren's syndrome. RMD Open 2024; 10:e003800. [PMID: 38453214 PMCID: PMC10921545 DOI: 10.1136/rmdopen-2023-003800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVES Paediatric Sjögren's syndrome (pSS) is a rare chronic autoimmune disorder, characterised by inflammation of exocrine glands. B cell hyperactivation plays a central role in adult-onset Sjogren. This study was designed to analyse B cell and T cell phenotype, levels of BAFF, and selection of autoreactive B cells in patients with pSS. METHODS A total of 17 patients diagnosed with pSS and 13 healthy donors (controls) comparable for age were enrolled in the study. B cell and T cell subsets and frequency of autoreactive B cells in peripheral blood were analysed by flow cytometry. Levels of BAFF were analysed by ELISA. RESULTS The relative frequency of total B cells, transitional, naïve and switched memory B cells was similar between pSS patients and controls. In patients with pSS, we observed a reduction in the frequency of unswitched memory B cells, an increased frequency of atypical memory B cells and an expansion of PD1hi CXCR5- T peripheral helper cells. Levels of BAFF were higher in patients with pSS compared with controls and correlated with serum levels of total IgG and titres of anti-Ro antibodies. The frequency of autoreactive B cells in the transitional, unswitched memory and plasmablast compartment was significantly higher in pSS patients than in controls. CONCLUSIONS Our results point to a hyperactivation of B cells in pSS. Current therapies do not seem to affect B cell abnormalities, suggesting that novel therapies targeting specifically B cell hyperactivation need to be implemented for paediatric patients.
Collapse
Affiliation(s)
- Alessandra Boni
- Division of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rebecca Nicolai
- Division of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ivan Caiello
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Francesca Marinaro
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Luciapia Farina
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | | | - Rita Carsetti
- B cell unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | | | - Claudia Bracaglia
- Division of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emiliano Marasco
- Division of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Kim SH, Kim Y, Jeon S, Park U, Kang JI, Jeon K, Kim HR, Oh S, Rhee JY, Choi JP, Park WB, Park SW, Yang JS, Lee JY, Kang J, Shin HS, Kim Y, Kim S, Kim YS, Lim DG, Cho NH. Rise in broadly cross-reactive adaptive immunity against human β-coronaviruses in MERS-recovered patients during the COVID-19 pandemic. SCIENCE ADVANCES 2024; 10:eadk6425. [PMID: 38416834 PMCID: PMC10901372 DOI: 10.1126/sciadv.adk6425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
To develop a universal coronavirus (CoV) vaccine, long-term immunity against multiple CoVs, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, Middle East respiratory syndrome (MERS)-CoV, and future CoV strains, is crucial. Following the 2015 Korean MERS outbreak, we conducted a long-term follow-up study and found that although neutralizing antibodies and memory T cells against MERS-CoV declined over 5 years, some recovered patients exhibited increased antibody levels during the COVID-19 pandemic. This likely resulted from cross-reactive immunity induced by SARS-CoV-2 vaccines or infections. A significant correlation in antibody responses across various CoVs indicates shared immunogenic epitopes. Two epitopes-the spike protein's stem helix and intracellular domain-were highly immunogenic after MERS-CoV infection and after SARS-CoV-2 vaccination or infection. In addition, memory T cell responses, especially polyfunctional CD4+ T cells, were enhanced during the pandemic, correlating significantly with MERS-CoV spike-specific antibodies and neutralizing activity. Therefore, incorporating these cross-reactive and immunogenic epitopes into pan-CoV vaccine formulations may facilitate effective vaccine development.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research, Seoul 03080, Republic of Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| | - Uni Park
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Il Kang
- Institute of Endemic Disease, Seoul National University Medical Research, Seoul 03080, Republic of Korea
| | - Kyeongseok Jeon
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Hye-Ran Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Songhyeok Oh
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ji-Young Rhee
- Division of Infectious Diseases, Department of Medicine, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| | - Jae-Phil Choi
- Department of Internal Medicine, Seoul Medical Center, Seoul 02053, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Won Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jeong-Sun Yang
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Jihye Kang
- Translational Research Center, Research Institute of Public Health, National Medical Center, Seoul 04564, Republic of Korea
| | - Hyoung-Shik Shin
- Division of Infectious Diseases, Department of Internal Medicine, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon 34824, Republic of Korea
| | - Yeonjae Kim
- Center for Infectious Diseases, National Medical Center, Seoul 04564, Republic of Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Dong-Gyun Lim
- Translational Research Center, Research Institute of Public Health, National Medical Center, Seoul 04564, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research, Seoul 03080, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 13620, Republic of Korea
| |
Collapse
|
5
|
Chen ZJ, Xiao J, Chen HH. Identification of Key Genes Related to Immune Cells in Patients with COVID-19 Via Integrated Bioinformatics-Based Analysis. Biochem Genet 2023; 61:2650-2671. [PMID: 37222960 PMCID: PMC10206360 DOI: 10.1007/s10528-023-10400-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
COVID-19 has spread all over the world which poses a serious threat to social economic development and public health. Despite enormous progress has been made in the prevention and treatment of COVID-19, the specific mechanism and biomarker related to disease severity or prognosis have not been clarified yet. Our study intended to further explore the diagnostic markers of COVID-19 and their relationship with serum immunology by bioinformatics analysis. The datasets about COVID-19 were downloaded from the Gene Expression Omnibus (GEO) dataset. The differentially expressed genes (DEGs) were selected via the limma package. Then, weighted gene co-expression network analysis (WGCNA) was conducted to identify the critical module associated with the clinic status. The intersection DEGs were processed for further enrichment analysis. The final diagnostic genes for COVID-19 were selected and verified through special bioinformatics algorithms. There were significant DEGs between the normal and COVID-19 patients. These genes were mainly enriched in cell cycle, complement and coagulation cascade, extracellular matrix (ECM) receptor interaction, and the P53 signaling pathway. As much as 357 common intersected DEGs were selected in the end. These DEGs were enriched in organelle fission, mitotic cell cycle phase transition, DNA helicase activity, cell cycle, cellular senescence, and P53 signaling pathway. Our study also identified CDC25A, PDCD6, and YWAHE were potential diagnostic markers of COVID-19 with the AUC (area under curve), 0.958 (95% CI 0.920-0.988), 0.941(95% CI 0.892-0.980), and 0.929 (95% CI 0.880-0.971). Moreover, CDC25A, PDCD6, and YWAHE were correlated with plasma cells, macrophages M0, T cells CD4 memory resting, T cells CD8, dendritic cells, and NK cells. Our study discovered that CDC25A, PDCD6, and YWAHE can be used as diagnostic markers for COVID-19. Moreover, these biomarkers were also closely associated with immune cell infiltration, which plays a pivotal role in the diagnosis and progression of COVID-19.
Collapse
Affiliation(s)
- Zhao-Jun Chen
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Xiao
- Department of Cardiology, Wuhan Asia Heart General Hospital, Wuhan, China
| | - Hai-Hua Chen
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Jeon K, Kim Y, Kang SK, Park U, Kim J, Park N, Koh J, Shim MS, Kim M, Rhee YJ, Jeong H, Lee S, Park D, Lim J, Kim H, Ha NY, Jo HY, Kim SC, Lee JH, Shon J, Kim H, Jeon YK, Choi YS, Kim HY, Lee WW, Choi M, Park HY, Park WY, Kim YS, Cho NH. Elevated IFNA1 and suppressed IL12p40 associated with persistent hyperinflammation in COVID-19 pneumonia. Front Immunol 2023; 14:1101808. [PMID: 36776879 PMCID: PMC9911526 DOI: 10.3389/fimmu.2023.1101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Despite of massive endeavors to characterize inflammation in COVID-19 patients, the core network of inflammatory mediators responsible for severe pneumonia stillremain remains elusive. Methods Here, we performed quantitative and kinetic analysis of 191 inflammatory factors in 955 plasma samples from 80 normal controls (sample n = 80) and 347 confirmed COVID-19 pneumonia patients (sample n = 875), including 8 deceased patients. Results Differential expression analysis showed that 76% of plasmaproteins (145 factors) were upregulated in severe COVID-19 patients comparedwith moderate patients, confirming overt inflammatory responses in severe COVID-19 pneumonia patients. Global correlation analysis of the plasma factorsrevealed two core inflammatory modules, core I and II, comprising mainly myeloid cell and lymphoid cell compartments, respectively, with enhanced impact in a severity-dependent manner. We observed elevated IFNA1 and suppressed IL12p40, presenting a robust inverse correlation in severe patients, which was strongly associated with persistent hyperinflammation in 8.3% of moderate pneumonia patients and 59.4% of severe patients. Discussion Aberrant persistence of pulmonary and systemic inflammation might be associated with long COVID-19 sequelae. Our comprehensive analysis of inflammatory mediators in plasmarevealed the complexity of pneumonic inflammation in COVID-19 patients anddefined critical modules responsible for severe pneumonic progression.
Collapse
Affiliation(s)
- Kyeongseok Jeon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Deajon, Republic of Korea
| | - Uni Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jayoun Kim
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nanhee Park
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Man-Shik Shim
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Deajon, Republic of Korea
| | - Minsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youn Ju Rhee
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Deajon, Republic of Korea
| | - Hyeongseok Jeong
- Department of Internal Medicine, Chungnam National University School of Medicine, Deajon, Republic of Korea
| | | | | | - Jinyoung Lim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyunsu Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Na-Young Ha
- Chungnam National University Hospital, Biomedical Research Institute, Deajon, Republic of Korea
| | - Hye-Yeong Jo
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sang Cheol Kim
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Ju-Hee Lee
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jiwon Shon
- Department of Biohealth Regulatory Science, School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Hoon Kim
- Department of Biohealth Regulatory Science, School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea.,Biopharmaceutical Convergence Major, School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youn-Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Young Park
- Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Woong-Yang Park
- Geninus Inc., Seoul, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Yeon-Sook Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Deajon, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-do, Republic of Korea
| |
Collapse
|