1
|
Dai T, Guo Y, Wen T, Yu S, Tao Y, Liu Z. Establishment of a Rapid Detection Technique Based on RPA-LFD and RPA-CRISPR/Cas12a on Phytophthora pini. Microorganisms 2025; 13:863. [PMID: 40284699 PMCID: PMC12029582 DOI: 10.3390/microorganisms13040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Phytophthora pini, a globally dispersed plant pathogen, poses a significant threat to natural ecosystems and cultivated horticultural crops. Early and precise detection of P. pini is essential for effective disease management. This study focused on developing specific, rapid, and sensitive molecular diagnostic techniques to identify the pathogenic oomycete P. pini. We employed recombinase polymerase amplification with lateral flow device (RPA-LFD) and RPA combined with CRISPR/Cas12a. The RPA-LFD method can identify P. pini at concentrations as low as 10 pg/μL in 30 min, while the RPA-CRISPR/Cas12a approach can detect the pathogen at 1 pg/μL in approximately 50 min. These methods are highly effective in identifying disease caused by P. pini and provide a basis for future field detection, which may reduce the economic losses associated with this devastating disease.
Collapse
Affiliation(s)
- Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Yufang Guo
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| | - Tongyue Wen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| | - Sinong Yu
- Modern Forestry Innovation Center of Yancheng State-Owned Forest Farm, Yancheng 224049, China;
| | - Yuan Tao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| | - Zhuo Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| |
Collapse
|
2
|
He D, Zhao S, Wang F, Wu B, Wei F, Zhao Y, Wei X, Ren H, Zhang M, Fan Y, Zhang J, Yu S, Tang Y, Diao Y. H9N2 avian influenza virus diagnostics utilizing specific high-sensitivity enzymatic molecular system termed RPA-based CRISPR-Cas13a. Int J Biol Macromol 2025; 301:140474. [PMID: 39884612 DOI: 10.1016/j.ijbiomac.2025.140474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
H9N2 avian influenza virus (AIV), a major pathogen causing respiratory infections in poultry, poses a significant threat to the poultry industry and human health. Early detection and control of H9N2 infections are essential for minimizing economic losses and preventing potential zoonotic transmission. A novel CRISPR-Cas family member called CRISPR-Cas13a comprises the CRISPR RNA (crRNA) and Cas13a nuclease. Through the crRNA-based reprogramming of Cas13a, a platform for sensing RNAs specifically is available. In this study, we developed a RPA-based CRISPR-Cas13a diagnostic method for rapid detection of the H9N2 AIV. The results demonstrated that at a limit of 10 copies/μL and 102 copies/μL could be detected within 50 min, by fluorescence detection and lateral flow strip, respectively, offering a highly sensitive method for H9N2 detection. This method exhibited excellent specificity, distinguishing H9N2 from other pathogens. Furthermore, the RPA-Cas13a-based detection system was tested on clinical samples, showing comparable performance to RT-qPCR. The detection results were visualized using either lateral flow assays or fluorescence, making it a suitable tool for on-site, field-deployable diagnostics. In a word, this RPA-Cas13a diagnostic approach offers high reliability, sensitivity, and specificity, with promising potential for rapidly detecting H9N2 and other viral pathogens in clinical and food safety applications.
Collapse
Affiliation(s)
- Dalin He
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Saisai Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Fangfang Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Bingrong Wu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Feng Wei
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Yubo Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Xinhui Wei
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Hui Ren
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Meijuan Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Yaru Fan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Jiahao Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Shumin Yu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Yi Tang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 10091, China.
| | - Youxiang Diao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China.
| |
Collapse
|
3
|
Hueso L, Martorell S, Sena-Torralba A, Ferrando M, Ferri M, Maquieira A, Ntoumi F, Morais S. Recombinase polymerase amplification technology for point-of-care diagnosis of neglected tropical diseases. Int J Infect Dis 2025; 153:107831. [PMID: 39900222 DOI: 10.1016/j.ijid.2025.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Recombinase Polymerase Amplification (RPA) technology significantly advances the diagnostics of neglected tropical diseases (NTDs), providing rapid, isothermal, and minimally preparative testing ideally suited for under-resourced countries. This review critically assesses the current applications, limitations, and potential of RPA for detecting a broad spectrum of NTD pathogens, including viruses, bacteria, helminths, and fungi. The ability of RPA to operate under constant temperature conditions without the need for complex thermal cycling facilitates rapid pathogen detection within minutes, enhancing its utility for decentralized point-of-care testing in remote and underserved regions. RPA, however, faces limitations, including the labor-intensive and costly validation of primer design, especially for multiplex assays, and a susceptibility to nonspecific amplification. These challenges highlight the need for continuous refinement to ensure reliable and consistent performance across diverse environmental conditions. Despite these constraints, the scalability of RPA assays and their compatibility with portable detection platforms make them well-suited for deployment in field settings without access to traditional laboratory infrastructure. This review emphasizes the transformative potential of RPA in NTD diagnostics, enhancing accessibility, precision, and timeliness of interventions, ultimately contributing to improved global public health outcomes.
Collapse
Affiliation(s)
- Luisa Hueso
- Kveloce (Senior Europa S.L.), Plaza de la Reina 19, Valencia, Spain
| | - Sara Martorell
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Maite Ferrando
- Kveloce (Senior Europa S.L.), Plaza de la Reina 19, Valencia, Spain
| | - Mireia Ferri
- Kveloce (Senior Europa S.L.), Plaza de la Reina 19, Valencia, Spain
| | - Angel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| | - Francine Ntoumi
- Institute for Tropical Medicine, University of Tübingen, Germany; Congolese Foundation for Medical Research (FCRM), Brazzaville, Republic of Congo
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
4
|
Wei B, Wang W, Guo Z, Yin W, Cheng M, Yang Y, Tian Y, Sun Y, Liu T, Hu Y, She R, Tian J. Rapid visual detection of hepatitis E virus combining reverse transcription recombinase-aided amplification with lateral flow dipstick and real-time fluorescence. J Clin Microbiol 2025; 63:e0106424. [PMID: 39817756 PMCID: PMC11837526 DOI: 10.1128/jcm.01064-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/14/2024] [Indexed: 01/18/2025] Open
Abstract
Hepatitis E virus (HEV) is a globally prevalent zoonotic pathogen that is primarily spread through the fecal-oral route, such as by consuming undercooked or contaminated pork. HEV infection leads to an estimated 3.3 million symptomatic cases of viral hepatitis and 70,000 deaths in human populations each year. Therefore, a rapid and accurate method for detecting HEV in serum or stool samples is essential. In this study, we aimed to develop and evaluate two methods for the rapid and convenient detection of HEV RNA: reverse transcription recombinase-aided amplification with lateral flow dipstick (RT-RAA-LFD) and quantitative real-time reverse transcription recombinase-aided amplification (qRT-RAA). We optimized the reaction conditions and assessed their sensitivity and specificity. The RT-RAA-LFD assay completed its reaction at 39°C within 15 minutes, achieving a 95% limit of detection (LOD) of 247 copies/μL. The qRT-RAA assay, completed at 42°C within 20 minutes, had a 95% LOD of 25 copies/μL. Both assays demonstrated no cross-reactivity with other porcine pathogens and exhibited strong specificity. In testing 245 porcine bile and fecal samples, the RT-RAA-LFD assay showed a kappa value of 0.943 (P < 0.001) with a 97.14% (238/245) coincidence rate compared with quantitative reverse transcription PCR. Similarly, the qRT-RAA assay achieved a kappa value of 0.976 (P < 0.001) with a 98.78% (242/245) coincidence rate. In conclusion, these two RT-RAA assays show promising potential as effective diagnostic tools for broad and efficient screening of swine HEV in veterinary clinics. IMPORTANCE Hepatitis E virus (HEV) is a globally widespread zoonotic pathogen that poses a significant public health risk. Swine serve as the primary natural host for zoonotic HEV. This study introduces a rapid and precise method for detecting swine HEV RNA, showcasing its potential as an effective diagnostic tool for comprehensive and efficient screening of swine HEV in veterinary clinics.
Collapse
Affiliation(s)
- Bingyan Wei
- Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenlong Wang
- School of Basic Medical Sciences, Xi'An Jiaotong University, Xi'An, Shaanxi, China
| | - Zixuan Guo
- Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenjiao Yin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Minheng Cheng
- Beijing Center for Animal Disease Control and Prevention, Beijing, China
| | - Yifei Yang
- Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuewei Tian
- Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yaxin Sun
- Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tianlong Liu
- Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanxin Hu
- Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiping She
- Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jijing Tian
- Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Xie L, Xu J, Fan L, Sun X, Zheng Z. Point-of-care test of blood Plasmodium RNA within a Pasteur pipette using a novel isothermal amplification without nucleic acid purification. Infect Dis Poverty 2024; 13:80. [PMID: 39478546 PMCID: PMC11526708 DOI: 10.1186/s40249-024-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Resource-limited regions face a greater burden of infectious diseases due to limited access to molecular tests, complicating timely diagnosis and management. Current molecular point-of-care tests (POCTs) either come with high costs or lack adequate sensitivity and specificity. To facilitate better prevention and control of infectious diseases in underserved areas, we seek to address the need for molecular POCTs that better align with the World Health Organization (WHO)'s ASSURED criteria-Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free, and Deliverable to end users. METHODS A novel molecular POCT, Pasteur Pipette-assisted isothermal probe amplification (pp-IPA), was developed for malaria detection. Without any microfluidics, this method captures Plasmodium 18S rRNA in a modified Pasteur pipette using tailed genus-specific probes. After washing, the bound tailed probes are ligated to form a template for subsequent novel isothermal probe amplification using a pair of generic primers, bypassing nucleic acid extraction and reverse transcription. The method was assessed using cultured Plasmodium and compared with real-time quantitative reverse transcription PCR (RT-qPCR) or reverse transcription loop-mediated isothermal amplification (RT-LAMP) in clinical blood samples. RESULTS The entire assay is completed in 60-80 min with minimal hands-on time, using only a Pasteur pipette and a water bath. The pp-IPA's analytical sensitivity is 1.28 × 10-4 parasites/μl, with 100% specificity against various blood-borne pathogens causing malaria-like symptoms. Additionally, pp-IPA needs only liquid-transfer skill for operation and the cost is around USD 0.25 per test, making it at least 300 times lower than mainstream POCT platforms. CONCLUSIONS Designed to improve the accessibility of molecular detection in resource-limited settings, pp-IPA's simplicity, affordability, high sensitivity/specificity, and minimal equipment requirements make it a promising point-of-care pathogen identification tool in resource-constrained regions.
Collapse
Affiliation(s)
- Lyu Xie
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, No. 5, Dongdansantiao, Dongcheng District, Beijing, 10005, China
| | - Jiyu Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, No. 5, Dongdansantiao, Dongcheng District, Beijing, 10005, China
| | - Lihua Fan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, No. 5, Dongdansantiao, Dongcheng District, Beijing, 10005, China
| | - Xiaodong Sun
- Yunnan Institute of Parasitic Diseases & Yunnan Provincial Centre of Malaria Research, Pu'er, China
| | - Zhi Zheng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, No. 5, Dongdansantiao, Dongcheng District, Beijing, 10005, China.
| |
Collapse
|
6
|
Khatmi G, Klinavičius T, Simanavičius M, Silimavičius L, Tamulevičienė A, Rimkutė A, Kučinskaitė-Kodzė I, Gylys G, Tamulevičius T. Lateral flow assay sensitivity and signal enhancement via laser µ-machined constrains in nitrocellulose membrane. Sci Rep 2024; 14:22936. [PMID: 39358489 PMCID: PMC11446913 DOI: 10.1038/s41598-024-74407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Lateral flow assay (LFA) is a handful diagnostic technology that can identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other common respiratory viruses in one strip, which can be tested at the point-of-care without the need for equipment or skilled personnel outside the laboratory. Although its simplicity and practicality make it an appealing solution, it remains a grand challenge to substantially enhance the colorimetric LFA sensitivity. In this work, we present a straightforward approach to enhance the sensitivity of LFA by imposing the flow constraints in nitrocellulose (NC) membranes via a number of vertical femtosecond laser micromachined microchannels which is important for prolonged specific binding interactions. Porous NC membrane surfaces were structured with different widths and densities µ-channels employing a second harmonic of the Yb:KGW femtosecond laser and sample XYZ translation over a microscope objective-focused laser beam. The influence of the microchannel parameters on the vertical wicking speed was evaluated from the video recordings. The obtained results indicated that µ-channel length, width, and density in NC membranes controllably increased the immunological reaction time between the analyte and the labeled antibody by 950%. Image analysis of the colorimetric indicators confirmed that the flow rate delaying strategy enhanced the signal sensitives by 40% compared with pristine NC LFA.
Collapse
Affiliation(s)
- Gazy Khatmi
- Department of Physics, Kaunas University of Technology, Kaunas, Lithuania.
| | - Tomas Klinavičius
- Institute of Materials Science, Kaunas University of Technology, Kaunas, Lithuania
| | - Martynas Simanavičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laimis Silimavičius
- UAB Sanpharm, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Asta Tamulevičienė
- Department of Physics, Kaunas University of Technology, Kaunas, Lithuania
- Institute of Materials Science, Kaunas University of Technology, Kaunas, Lithuania
| | - Agnė Rimkutė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | | | - Tomas Tamulevičius
- Department of Physics, Kaunas University of Technology, Kaunas, Lithuania.
- Institute of Materials Science, Kaunas University of Technology, Kaunas, Lithuania.
| |
Collapse
|
7
|
Zeng F, Chen X, Zhong W, Chen T, Sa J, Wang G, Zhang S, Peng S. Recombinase-aid amplification combined with lateral flow detection assay for sex identification of the great white pelican (Pelecanus onocrotalus). Sci Rep 2024; 14:21332. [PMID: 39266713 PMCID: PMC11393076 DOI: 10.1038/s41598-024-72743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
Sex identification in avian species is essential for biodiversity conservation and ecological studies. However, the sex of nearly half of the birds could not be identified based on their external appearance. It is difficult to visually identify sex to monitor the ecology and conservation of wild populations. In this study, we designed primer pairs for large white pelican using recombinase-based isothermal amplification combined with a lateral flow dipstick (RAA-LFD) assay for chromo-helicase-DNA binding protein (CHD) genes mapped to W chromosomes and an ultra-conserved element (UCE) located on chromosome 6, respectively. Our result showed that the raaW4-RAA-LFD can detect up to 0.1 ng of genomic DNA (gDNA) templates of female pelicans in 30 min at 39 ℃ and accurately distinguish female from male without any cross reactivity. RaaUCE2-RAA-LFD can amplify both male and female pelicans with a detection limit of 25 pg. To further evaluate the assay, 15 white pelicans of unknown sex were tested using the RAA-LFD assay and conventional polymerase chain reaction (PCR). The results of the raaW4-RAA-LFD assay were consistent with those of the conventional PCR. The developed RAA-LFD assay is equipped with field-deployable instruments and offers a field platform for rapid and reliable sex identification in pelicans.
Collapse
Affiliation(s)
- Fanwen Zeng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China.
| | - Xuanjiao Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Wanhuan Zhong
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Tanzipeng Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Jiaqi Sa
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Guoqian Wang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Shouquan Zhang
- College of Animal Science of South, China Agricultural University, Guangzhou, 510642, China.
| | - Shiming Peng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China.
| |
Collapse
|
8
|
Yalley AK, Ocran J, Cobbinah JE, Obodai E, Yankson IK, Kafintu-Kwashie AA, Amegatcher G, Anim-Baidoo I, Nii-Trebi NI, Prah DA. Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review. Trop Med Infect Dis 2024; 9:190. [PMID: 39330879 PMCID: PMC11435979 DOI: 10.3390/tropicalmed9090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Malaria continues to pose a health challenge globally, and its elimination has remained a major topic of public health discussions. A key factor in eliminating malaria is the early and accurate detection of the parasite, especially in asymptomatic individuals, and so the importance of enhanced diagnostic methods cannot be overemphasized. This paper reviewed the advances in malaria diagnostic tools and detection methods over recent years. The use of these advanced diagnostics in lower and lower-middle-income countries as compared to advanced economies has been highlighted. Scientific databases such as Google Scholar, PUBMED, and Multidisciplinary Digital Publishing Institute (MDPI), among others, were reviewed. The findings suggest important advancements in malaria detection, ranging from the use of rapid diagnostic tests (RDTs) and molecular-based technologies to advanced non-invasive detection methods and computerized technologies. Molecular tests, RDTs, and computerized tests were also seen to be in use in resource-limited settings. In all, only twenty-one out of a total of eighty (26%) low and lower-middle-income countries showed evidence of the use of modern malaria diagnostic methods. It is imperative for governments and other agencies to direct efforts toward malaria research to upscale progress towards malaria elimination globally, especially in endemic regions, which usually happen to be resource-limited regions.
Collapse
Affiliation(s)
- Akua K. Yalley
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Joyous Ocran
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana; (J.O.); (J.E.C.)
| | - Jacob E. Cobbinah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana; (J.O.); (J.E.C.)
| | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana;
| | - Isaac K. Yankson
- CSIR-Building and Road Research Institute, Kumasi P.O. Box UP40, Kumasi, Ghana;
| | - Anna A. Kafintu-Kwashie
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Gloria Amegatcher
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Isaac Anim-Baidoo
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Nicholas I. Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Diana A. Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- Department of Science Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Barnes Road, Accra P.O. Box GP 561, Ghana
| |
Collapse
|
9
|
Huang HL, Luo NJ, Chen WZ, Wang XW, Zhou CX, Jiang HB. A highly specific and ultrasensitive approach to detect Prymnesium parvum based on RPA-CRISPR-LbaCas12a-LFD system. Anal Chim Acta 2024; 1315:342797. [PMID: 38879209 DOI: 10.1016/j.aca.2024.342797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Harmful algal blooms (HABs), caused by the rapid proliferation or aggregation of microorganisms, are catastrophic for the environment. The Prymnesium parvum is a haptophyte algal species that is found worldwide and is responsible for extensive blooms and death of larval amphibians and bivalves, causing serious negative impacts on the ecological environment. For the prevention and management of environmental pollution, it is crucial to explore and develop early detection strategies for HABs on-site using simple methods. The major challenge related to early detection is the accurate and sensitive detection of algae present in low abundance. RESULTS Herein, recombinase polymerase amplification (RPA) was combined with clustered regularly interspaced short palindromic repeats and Cas12a protein (CRISPR-LbaCas12a) systems, and the lateral flow dipstick (LFD) was used for the first time for early detection of P. parvum. The internal transcribed spacer (ITS) of P. parvum was selected as the target sequence, and the concentration of single-strand DNA reporters, buffer liquid system, reaction time, and amount of gold particles were optimized. The RPA-CRISPR-LbaCas12a-LFD approach demonstrated highly specificity during experimental testing, with no cross-reaction against different microalgae used as controls. In addition, the lowest detection limit was 10,000 times better than the lowest detection limit of the standalone RPA approach. The feasibility and robustness of this approach were further verified by using the different environmental samples. It also observed that P. parvum are widely distributed in Chinese Sea, but the cell density of P. parvum is relatively low (<0.1 cells/mL). SIGNIFICANCE The developed approach has an excellent specificity and offers 10,000 times better sensitivity than the standalone RPA approach. These advantages make this approach suitable for early warning detection and prevention of HAB events in environmental water. Also, the outcomes of this study could promote a shift from traditional laboratory-based detection to on-site monitoring, facilitating early warning against HABs.
Collapse
Affiliation(s)
- Hai-Long Huang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ning-Jian Luo
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei-Zhong Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xing-Wei Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Cheng-Xu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hai-Bo Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315211, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519080, China.
| |
Collapse
|
10
|
Li X, Zhu S, Zhang X, Ren Y, He J, Zhou J, Yin L, Wang G, Zhong T, Wang L, Xiao Y, Zhu C, Yin C, Yu X. Advances in the application of recombinase-aided amplification combined with CRISPR-Cas technology in quick detection of pathogenic microbes. Front Bioeng Biotechnol 2023; 11:1215466. [PMID: 37720320 PMCID: PMC10502170 DOI: 10.3389/fbioe.2023.1215466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
The rapid diagnosis of pathogenic infections plays a vital role in disease prevention, control, and public health safety. Recombinase-aided amplification (RAA) is an innovative isothermal nucleic acid amplification technology capable of fast DNA or RNA amplification at low temperatures. RAA offers advantages such as simplicity, speed, precision, energy efficiency, and convenient operation. This technology relies on four essential components: recombinase, single-stranded DNA-binding protein (SSB), DNA polymerase, and deoxyribonucleoside triphosphates, which collectively replace the laborious thermal cycling process of traditional polymerase chain reaction (PCR). In recent years, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-associated proteins) system, a groundbreaking genome engineering tool, has garnered widespread attention across biotechnology, agriculture, and medicine. Increasingly, researchers have integrated the recombinase polymerase amplification system (or RAA system) with CRISPR technology, enabling more convenient and intuitive determination of detection results. This integration has significantly expanded the application of RAA in pathogen detection. The step-by-step operation of these two systems has been successfully employed for molecular diagnosis of pathogenic microbes, while the single-tube one-step method holds promise for efficient pathogen detection. This paper provides a comprehensive review of RAA combined with CRISPR-Cas and its applications in pathogen detection, aiming to serve as a valuable reference for further research in related fields.
Collapse
Affiliation(s)
- Xiaoping Li
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Shuying Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Xinling Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Jing He
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Jiawei Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Liliang Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Gang Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang Province, 310015, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, 510006, China
| | - Chunying Zhu
- Clinical Psychology Department, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, 999078, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, 510006, China
| |
Collapse
|
11
|
Ding N, Qi W, Wu Z, Zhang Y, Xu R, Lin Q, Zhu J, Zhang H. Development of Enzymatic Recombinase Amplification Assays for the Rapid Visual Detection of HPV16/18. J Microbiol Biotechnol 2023; 33:1091-1100. [PMID: 37635316 PMCID: PMC10468672 DOI: 10.4014/jmb.2304.04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 08/29/2023]
Abstract
Human papillomavirus (HPV) types 16 and 18 are the major causes of cervical lesions and are associated with 71% of cervical cancer cases globally. However, public health infrastructures to support cervical cancer screening may be unavailable to women in low-resource areas. Therefore, sensitive, convenient, and cost-efficient diagnostic methods are required for the detection of HPV16/18. Here, we designed two novel methods, real-time ERA and ERA-LFD, based on enzymatic recombinase amplification (ERA) for quick point-of-care identification of the HPV E6/E7 genes. The entire detection process could be completed within 25 min at a constant low temperature (35-43°C), and the results of the combined methods could be present as the amplification curves or the bands presented on dipsticks and directly interpreted with the naked eye. The ERA assays evaluated using standard plasmids carrying the E6/E7 genes and clinical samples exhibited excellent specificity, as no cross-reaction with other common HPV types was observed. The detection limits of our ERA assays were 100 and 101 copies/μl for HPV16 and 18 respectively, which were comparable to those of the real-time PCR assay. Assessment of the clinical performance of the ERA assays using 114 cervical tissue samples demonstrated that they are highly consistent with real-time PCR, the gold standard for HPV detection. This study demonstrated that ERA-based assays possess excellent sensitivity, specificity, and repeatability for HPV16 and HPV18 detection with great potential to become robust diagnostic tools in local hospitals and field studies.
Collapse
Affiliation(s)
- Ning Ding
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, P.R. China
| | - Wanwan Qi
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, P.R. China
| | - Zihan Wu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210018, P.R. China
| | - Yaqin Zhang
- Department of Infectious Disease, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Ruowei Xu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210018, P.R. China
- Nanjing Normal University, Nanjing 210023, P.R. China
| | - Qiannan Lin
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, P.R. China
| | - Jin Zhu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210018, P.R. China
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, P.R. China
| |
Collapse
|
12
|
Li D, Zhao J, Lan W, Zhao Y, Sun X. Effect of food matrix on rapid detection of Vibrio parahaemolyticus in aquatic products based on toxR gene. World J Microbiol Biotechnol 2023; 39:188. [PMID: 37156898 DOI: 10.1007/s11274-023-03640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Vibrio parahaemolyticus has become an important public threat to human health. Rapid and robust pathogen diagnostics are necessary for monitoring its outbreak and spreading. Herein, we report an assay for the detection of V. parahaemolyticus based on recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD), namely RAA-LFD. The RAA-LFD took 20 min at 36~38 ℃, and showed excellent specificity. It detected as low as 6.4 fg/µL of V. parahaemolyticus in genomic DNA, or 7.4 CFU/g spiked food samples with 4 h of enrichment. The limit of detection in shrimp (Litopenaeus Vannamei), fish (Carassius auratus), clam (Ruditapes philippinarum) evidenced that sensitivity was considerably affected by the food matrix. The presence of food matrix reduced the sensitivity of spiked food samples by 10 ~ 100 times. In the filed samples detection, RAA-LFD method showed good coincidence with GB4789.7-2013 method and PCR method at rates of 90.6% and 94.1%, respectively. RAA-LFD has high accuracy and sensitivity for the detection of V. parahaemolyticus, which can serve as a model tool to meet the growing need for point-of-care diagnosis of V. parahaemolyticus.
Collapse
Affiliation(s)
- Darong Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jiayi Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
13
|
Lu C, Wang J, Pan L, Gu X, Lu W, Chen D, Zhang C, Ye Q, Xiao C, Liu P, Tang Y, Tang B, Huang G, Fang J, Jiang H. Rapid detection of multiple resistance genes to last-resort antibiotics in Enterobacteriaceae pathogens by recombinase polymerase amplification combined with lateral flow dipstick. Front Microbiol 2023; 13:1062577. [PMID: 36687650 PMCID: PMC9850091 DOI: 10.3389/fmicb.2022.1062577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
The worrying emergence of multiple resistance genes to last-resort antibiotics in food animals and human populations throughout the food chain and relevant environments has been increasingly reported worldwide. Enterobacteriaceae pathogens are considered the most common reservoirs of such antibiotic resistance genes (ARGs). Thus, a rapid, efficient and accurate detection method to simultaneously screen and monitor such ARGs in Enterobacteriaceae pathogens has become an urgent need. Our study developed a recombinase polymerase amplification (RPA) assay combined with a lateral flow dipstick (LFD) for simultaneously detecting predominant resistance genes to last-resort antibiotics of Enterobacteriaceae pathogens, including mcr-1, blaNDM-1 and tet(X4). It is allowed to complete the entire process, including crude DNA extraction, amplification as well as reading, within 40 min at 37°C, and the detection limit is 101 copies/μl for mcr-1, blaNDM-1 and tet(X4). Sensitivity analysis showed obvious association of color signals with the template concentrations of mcr-1, blaNDM-1 and tet(X4) genes in Enterobacteriaceae pathogens using a test strip reader (R 2 = 0.9881, R 2 = 0.9745, and R 2 = 0.9807, respectively), allowing for quantitative detection using multiplex RPA-LFD assays. Therefore, the RPA-LFD assay can suitably help to detect multiple resistance genes to last-resort antibiotics in foodborne pathogens and has potential applications in the field.
Collapse
Affiliation(s)
- Chenze Lu
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Jingwen Wang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Leiming Pan
- Zhejiang Hongzheng Testing Co., Ltd, Ningbo, Zhejiang, China
| | - Xiuying Gu
- Zhejiang Gongzheng Testing Center Co., Ltd, Hangzhou, Zhejiang, China
| | - Wenjing Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Di Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Cen Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qin Ye
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Pengpeng Liu
- Key Laboratory of Biosafety Detection for Zhejiang Market Regulation, Zhejiang Fangyuan Testing Group LO.T, Hangzhou, Zhejiang, China
| | - Yulong Tang
- Hangzhou Tiannie Technology Co., Ltd, Hangzhou, Zhejiang, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products and Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guangrong Huang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China,*Correspondence: Jiehong Fang, ✉
| | - Han Jiang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China,Han Jiang, ✉
| |
Collapse
|