1
|
Qi Z, Ju F, Guo Y, Du Y, Yu J, Zhang R, Yu M, Cao H, Song T, Pan X, Dai T, Liu Y. A Rapid, Equipment-Free Method for Detecting Avirulence Genes of Pyricularia oryzae Using a Lateral Flow Strip-Based RPA Assay. PLANT DISEASE 2024; 108:2283-2290. [PMID: 38587798 DOI: 10.1094/pdis-10-23-2098-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Rice blast, caused by Pyricularia oryzae, is one of the most destructive rice diseases worldwide. Using resistant rice varieties is the most cost-effective way to control rice blast. Consequently, it is critical to monitor the distribution frequency of avirulence (Avr) genes in rice planting fields to facilitate the breeding of resistant rice varieties. In this study, we established a rapid recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) detection system for the identification of AvrPik, Avr-Piz-t, and Avr-Pi9. The optimized reaction temperature and duration were 37°C and 20 min, indicating that the reaction system could be initiated by body temperature without relying on any precision instruments. Specificity analysis showed that the primer and probe combinations targeting the three Avr genes exhibited a remarkable specificity at genus-level detection. Under the optimized condition, the lower detected thresholds of AvrPik, Avr-Piz-t, and Avr-Pi9 were 10 fg/μl, 100 fg/μl, and 10 pg/μl, respectively. Notably, the detection sensitivity of the three Avr genes was much higher than that of PCR. In addition, we also successfully detected the presence of AvrPik, Avr-Piz-t, and Avr-Pi9 in the leaf and panicle blast lesions with the RPA-LFD detection system. In particular, the genomic DNA was extracted using the simpler PEG-NaOH rapid extraction method. In summary, we developed an RPA detection system for AvrPik, Avr-Pi9, and Avr-Piz-t, combined with the PEG-NaOH rapid DNA extraction method. The innovative approach achieved rapid, real-time, and accurate detection of the three Avr genes in the field, which is helpful to understand the distribution frequency of the three Avr genes in the field and provide theoretical reference for the scientific layout of resistant rice varieties.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Fangyi Ju
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yunxia Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
2
|
Li Z, Feng W, Zhu Z, Lu S, Lin M, Dong J, Wang Z, Liu F, Chen Q. Cas-OPRAD: a one-pot RPA/PCR CRISPR/Cas12 assay for on-site Phytophthora root rot detection. Front Microbiol 2024; 15:1390422. [PMID: 38903797 PMCID: PMC11188302 DOI: 10.3389/fmicb.2024.1390422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Phytophthora sojae is a devastating plant pathogen that causes soybean Phytophthora root rot worldwide. Early on-site and accurate detection of the causal pathogen is critical for successful management. In this study, we have developed a novel and specific one-pot RPA/PCR-CRISPR/Cas12 assay for on-site detection (Cas-OPRAD) of Phytophthora root rot (P. sojae). Compared to the traditional RPA/PCR detection methods, the Cas-OPRAD assay has significant detection performance. The Cas-OPRAD platform has excellent specificity to distinguish 33 P. sojae from closely related oomycetes or fungal species. The PCR-Cas12a assay had a consistent detection limit of 100 pg. μL-1, while the RPA-Cas12a assay achieved a detection limit of 10 pg. μL-1. Furthermore, the Cas-OPRAD assay was equipped with a lateral flow assay for on-site diagnosis and enabled the visual detection of P. sojae on the infected field soybean samples. This assay provides a simple, efficient, rapid (<1 h), and visual detection platform for diagnosing Phytophthora root rot based on the one-pot CRISPR/Cas12a assay. Our work provides important methods for early and accurate on-site detection of Phytophthora root rot in the field or customs fields.
Collapse
Affiliation(s)
- Zhiting Li
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Wanzhen Feng
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Zaobing Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shengdan Lu
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Mingze Lin
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Jiali Dong
- Sanya Institute of China Agricultural University, Sanya, China
| | - Zhixin Wang
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Post-Entry Quarantine Center for Tropical Plant, Haikou, China
| | - Fuxiu Liu
- Post-Entry Quarantine Center for Tropical Plant, Haikou, China
| | - Qinghe Chen
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
3
|
Wang R, Li B, Shi M, Zhao Y, Lin J, Chen Q, Liu P. Rapid Visual Detection of Peronophythora litchii on Lychees Using Recombinase Polymerase Amplification Combined with Lateral Flow Assay Based on the Unique Target Gene Pl_101565. PLANTS (BASEL, SWITZERLAND) 2024; 13:555. [PMID: 38498516 PMCID: PMC10891779 DOI: 10.3390/plants13040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Downy blight, caused by Peronophythora litchii, is a destructive disease that impacts lychee fruit throughout the pre-harvest, post-harvest, and transportation phases. Therefore, the prompt and precise identification of P. litchii is crucial for the effective management of the disease. A novel gene encoding a Rh-type ammonium transporter, Pl_101565, was identified in P. litchii through bioinformatic analysis in this study. Based on this gene, a coupled recombinase polymerase amplification-lateral flow (RPA-LF) assay for the rapid visual detection of P. litchii was developed. The assay has been shown to detect P. litchii accurately, without cross-reactivity to related pathogenic oomycetes or fungi. Moreover, it can be performed effectively within 15 to 25 min at temperatures ranging from 28 to 46 °C. Under optimized conditions, the RPA-LF assay could detect as low as 1 pg of P. litchii genomic DNA in a 25 μL reaction system. Furthermore, the RPA-LF assay successfully detected P. litchii in infected lychee samples within a 30 min timeframe. These attributes establish the RPA-LF assay as a rapid, sensitive, and specific method for diagnosing P. litchii early; it is particularly suitable for applications in resource-limited settings.
Collapse
Affiliation(s)
- Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (R.W.); (B.L.); (M.S.); (Y.Z.); (J.L.)
| | - Benjin Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (R.W.); (B.L.); (M.S.); (Y.Z.); (J.L.)
| | - Mingyue Shi
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (R.W.); (B.L.); (M.S.); (Y.Z.); (J.L.)
| | - Yumei Zhao
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (R.W.); (B.L.); (M.S.); (Y.Z.); (J.L.)
| | - Jinlong Lin
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (R.W.); (B.L.); (M.S.); (Y.Z.); (J.L.)
| | - Qinghe Chen
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572000, China;
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (R.W.); (B.L.); (M.S.); (Y.Z.); (J.L.)
| |
Collapse
|
4
|
Yao Y, Luo N, Zong Y, Jia M, Rao Y, Huang H, Jiang H. Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay for the Rapid and Sensitive Detection of Pseudo-nitzschia multiseries. Int J Mol Sci 2024; 25:1350. [PMID: 38279350 PMCID: PMC10816074 DOI: 10.3390/ijms25021350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
The harmful algal bloom (HAB) species Pseudo-nitzschia multiseries is widely distributed worldwide and is known to produce the neurotoxin domoic acid, which harms marine wildlife and humans. Early detection and preventative measures are more critical than late management. However, the major challenge related to early detection is the accurate and sensitive detection of microalgae present in low abundance. Therefore, developing a sensitive and specific method that can rapidly detect P. multiseries is critical for expediting the monitoring and prediction of HABs. In this study, a novel assay method, recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD), is first developed for the detection of P. multiseries. To obtain the best test results, several important factors that affected the amplification effect were optimized. The internal transcribed spacer sequence of the nuclear ribosomal DNA from P. multiseries was selected as the target region. The results showed that the optimal amplification temperature and time for the recombinase polymerase amplification (RPA) of P. multiseries were 37 °C and 15 min. The RPA products could be visualized directly using the lateral flow dipstick after only 3 min. The RPA-LFD assay sensitivity for detection of recombinant plasmid DNA (1.9 × 100 pg/μL) was 100 times more sensitive than that of RPA, and the RPA-LFD assay sensitivity for detection of genomic DNA (2.0 × 102 pg/μL) was 10 times more sensitive than that of RPA. Its feasibility in the detection of environmental samples was also verified. In conclusion, these results indicated that the RPA-LFD detection of P. multiseries that was established in this study has high efficiency, sensitivity, specificity, and practicability. Management measures made based on information gained from early detection methods may be able to prevent certain blooms. The use of a highly sensitive approach for early warning detection of P. multiseries is essential to alleviate the harmful impacts of HABs on the environment, aquaculture, and human health.
Collapse
Affiliation(s)
- Yuqing Yao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Ningjian Luo
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Yujie Zong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Meng Jia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Yichen Rao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
5
|
Chen B, Zhang H, Wang H, Li S, Zhou P. Development and application of a dual ERA method for the detection of Feline Calicivirus and Feline Herpesvirus Type I. Virol J 2023; 20:62. [PMID: 37020252 PMCID: PMC10077619 DOI: 10.1186/s12985-023-02020-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Feline calicivirus (FCV) and feline herpesvirus type I (FHV-1) are the most common viral pathogens responsible for cat respiratory diseases, and coinfection with these two pathogens is often found. In veterinary clinics, the main diagnostic methods for FCV and FHV-1 are test strips and polymerase chain reaction (PCR). However, the sensitivity of test strips are not sufficient, and PCR is time-consuming. Therefore, developing a rapid and high-performance clinical diagnostic test is imperative for the prevention and treatment of these diseases. Enzymatic recombinase amplification (ERA) is an automated isothermal nucleic acid amplification technique that maintains a constant temperature, and is both rapid and highly accurate. In this study, a dual ERA method was developed using the Exo probe for a differential detection of FCV and FHV-1. This dual ERA method demonstrated high performance with the detection limit of 101 copies for both viruses, and no cross-reactions with feline parvovirus virus and F81 cells. To test the utility of the method for clinical applications, 50 nasopharyngeal swabs from cats with respiratory symptoms were collected and tested. The positive rates of FCV and FHV-1 were 40% (20/50, 95% confidence interval [CI], 26.4 to 54.8%) and 14% (7/50, 95% CI, 5.8 to 26.7%), respectively. The rate of coinfection with FCV and FHV-1 was 10% (5/50, 95% CI, 3.3 to 21.8%). These results were in agreement with those found using quantitative real-time PCR. Therefore, this dual ERA method is a novel and efficient clinical diagnostic tool for FCV and FHV-1 detection.
Collapse
Affiliation(s)
- Bo Chen
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Haoyang Zhang
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Hanhong Wang
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Shoujun Li
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Pei Zhou
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.
| |
Collapse
|