1
|
Gachuhi S, Kamunya S, Fienberg S, Wambua L, Salomane N, Mayoka G, Taylor D, Coertzen D, van der Watt M, Reader J, Birkholtz LM, Wittlin S, Krugmann L, Coulson LB, Chibale K. Medicinal Chemistry Progression of Sapanisertib, the Anticancer and Dual Plasmodium Phosphatidylinositol 4-Kinase Beta and cGMP-Dependent Protein Kinase Inhibitor, for Malaria. J Med Chem 2025. [PMID: 40377111 DOI: 10.1021/acs.jmedchem.4c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
We recently demonstrated that the anticancer human mTOR inhibitor sapanisertib displays antimalarial activity in a malaria mouse model of infection and inhibits multiple Plasmodium kinases, including the high-value targets phosphatidylinositol 4-kinase type III beta (PI4Kβ) and cGMP-dependent protein kinase (PKG). Herein, we explore structure-activity relationships for sapanisertib analogues with benzyl and pyridyl substituents at the 7-position of the pyrazolopyrimidine core. New analogues with improved safety profiles were identified, including analogues with dual Plasmodium PI4Kβ and PKG inhibitory activity (exemplified by 19), as well as potent Plasmodium PI4Kβ inhibitors with minimal inhibitory activity against PKG (exemplified by 20). Compound 19 displayed potent antiplasmodium activity, high microsomal metabolic stability, and a good safety profile (hERG IC50 > 30; cytotoxicity selectivity index = 99). In vivo proof-of-concept, where a 4 × 50 mg kg-1 oral dose of 19 resulted in an 80% reduction in parasitemia in P. berghei-infected mice, further demonstrated the lead potential of this series.
Collapse
Affiliation(s)
- Samuel Gachuhi
- Department of Chemistry, University of Cape Town, Rondebosch ,7701 Cape Town, South Africa
| | - Stephanie Kamunya
- Department of Chemistry, University of Cape Town, Rondebosch ,7701 Cape Town, South Africa
| | - Stephen Fienberg
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Lynn Wambua
- Department of Chemistry, University of Cape Town, Rondebosch ,7701 Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Nicolaas Salomane
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Godfrey Mayoka
- Department of Chemistry, University of Cape Town, Rondebosch ,7701 Cape Town, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028 Pretoria, South Africa
| | - Mariette van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028 Pretoria, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028 Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028 Pretoria, South Africa
- Department of Biochemistry, Stellenbosch University, Matieland, Stellenbosch 7602, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Liezl Krugmann
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Lauren B Coulson
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch ,7701 Cape Town, South Africa
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| |
Collapse
|
2
|
Ishmail FZ, Coertzen D, Tshabalala S, Leshabane M, da Rocha S, Njoroge M, Gibhard L, Birkholtz LM, Woodland JG, Egan TJ, Wicht KJ, Chibale K. Synthesis and SAR Studies of Acyl-Thiourea Platinum(II) Complexes Yield Analogs with Dual-Stage Antiplasmodium Activity. ACS Med Chem Lett 2025; 16:428-435. [PMID: 40104806 PMCID: PMC11912270 DOI: 10.1021/acsmedchemlett.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
Mixed-ligand platinum(II) complexes incorporating bipyridine and acyl-thiourea ligands were synthesized and evaluated for their in vitro growth inhibitory activity against the human malaria parasite Plasmodium falciparum (Pf). The substituents at four distinct sites were varied to identify structure-activity relationships for this series. Most complexes displayed potent PfNF54 activity with IC50 values in the nanomolar range and favorable cytotoxicity profiles. Five complexes (C1, C11, C12, C15, and C17) exhibited activity against both the asexual blood and sexual (gametocyte) stage parasites, with another complex (C8) exhibiting activity against late-stage gametocytes only. In addition, the complexes showed comparable ABS potency against the PfK1 multidrug-resistant strain. The pharmacokinetic parameters of one analog (C6), which displayed good solubility and mouse microsomal metabolic stability, were measured. This work demonstrates the potential of acyl-thiourea platinum(II) complexes as selective, multistage-active antiplasmodium compounds as part of the search for new antimalarial agents.
Collapse
Affiliation(s)
| | - Dina Coertzen
- Department
of Biochemistry, Genetics and Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Sizwe Tshabalala
- Department
of Biochemistry, Genetics and Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Meta Leshabane
- Department
of Biochemistry, Genetics and Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Shante da Rocha
- Department
of Biochemistry, Genetics and Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Mathew Njoroge
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Liezl Gibhard
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Lyn-Marie Birkholtz
- Department
of Biochemistry, Genetics and Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Hatfield 0028, South Africa
- Institute
for Sustainable Malaria Control, School of Public Health and Health
Systems, University of Pretoria, Hatfield 0028, South Africa
- Department
of Biochemistry, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa
| | - John G. Woodland
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
- South
African
Medical Research Council Drug Discovery and Development Research Unit,
Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Timothy J. Egan
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South
African
Medical Research Council Drug Discovery and Development Research Unit,
Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kathryn J. Wicht
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
- South
African
Medical Research Council Drug Discovery and Development Research Unit,
Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kelly Chibale
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
- South
African
Medical Research Council Drug Discovery and Development Research Unit,
Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
3
|
Xie SC, Tai CW, Morton CJ, Ma L, Huang SC, Wittlin S, Du Y, Hu Y, Dogovski C, Salimimarand M, Griffin R, England D, de la Cruz E, Deni I, Yeo T, Burkhard AY, Striepen J, Schindler KA, Crespo B, Gamo FJ, Khandokar Y, Hutton CA, Rabie T, Birkholtz LM, Famodimu MT, Delves MJ, Bolsher J, Koolen KMJ, van der Laak R, Aguiar ACC, Pereira DB, Guido RVC, Creek DJ, Fidock DA, Dick LR, Brand SL, Gould AE, Langston S, Griffin MDW, Tilley L. A potent and selective reaction hijacking inhibitor of Plasmodium falciparum tyrosine tRNA synthetase exhibits single dose oral efficacy in vivo. PLoS Pathog 2024; 20:e1012429. [PMID: 39652589 DOI: 10.1371/journal.ppat.1012429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/26/2024] [Accepted: 10/31/2024] [Indexed: 12/28/2024] Open
Abstract
The Plasmodium falciparum cytoplasmic tyrosine tRNA synthetase (PfTyrRS) is an attractive drug target that is susceptible to reaction-hijacking by AMP-mimicking nucleoside sulfamates. We previously identified an exemplar pyrazolopyrimidine ribose sulfamate, ML901, as a potent reaction hijacking inhibitor of PfTyrRS. Here we examined the stage specificity of action of ML901, showing very good activity against the schizont stage, but lower trophozoite stage activity. We explored a series of ML901 analogues and identified ML471, which exhibits improved potency against trophozoites and enhanced selectivity against a human cell line. Additionally, it has no inhibitory activity against human ubiquitin-activating enzyme (UAE) in vitro. ML471 exhibits low nanomolar activity against asexual blood stage P. falciparum and potent activity against liver stage parasites, gametocytes and transmissible gametes. It is fast-acting and exhibits a long in vivo half-life. ML471 is well-tolerated and shows single dose oral efficacy in the SCID mouse model of P. falciparum malaria. We confirm that ML471 is a reaction hijacking inhibitor that is converted into a tight binding Tyr-ML471 conjugate by the PfTyrRS enzyme. A crystal structure of the PfTyrRS/ Tyr-ML471 complex offers insights into improved potency, while molecular docking into UAE provides a rationale for improved selectivity.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Chia-Wei Tai
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig J Morton
- Biomedical Manufacturing Program, CSIRO, Clayton South, Victoria, Australia
| | - Liting Ma
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Shih-Chung Huang
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Yawei Du
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yongbo Hu
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Con Dogovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mina Salimimarand
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Griffin
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Dylan England
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Elisa de la Cruz
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Ioanna Deni
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Tomas Yeo
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Anna Y Burkhard
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Josefine Striepen
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Kyra A Schindler
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Benigno Crespo
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | | | - Craig A Hutton
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tayla Rabie
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Mufuliat T Famodimu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | - Anna C C Aguiar
- Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Dhelio B Pereira
- Research Center for Tropical Medicine of Rondonia, Porto Velho, Brazil
| | - Rafael V C Guido
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Darren J Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
| | - Lawrence R Dick
- Seofon Consulting, Natick, Massachusetts, United States of America
| | | | - Alexandra E Gould
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Steven Langston
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Leann Tilley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Naude M, van Heerden A, Reader J, van der Watt M, Niemand J, Joubert D, Siciliano G, Alano P, Njoroge M, Chibale K, Herreros E, Leroy D, Birkholtz LM. Eliminating malaria transmission requires targeting immature and mature gametocytes through lipoidal uptake of antimalarials. Nat Commun 2024; 15:9896. [PMID: 39548094 PMCID: PMC11568134 DOI: 10.1038/s41467-024-54144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Novel antimalarial compounds targeting both the pathogenic and transmissible stages of the human malaria parasite, Plasmodium falciparum, would greatly benefit malaria elimination strategies. However, most compounds affecting asexual blood stage parasites show severely reduced activity against gametocytes. The impact of this activity loss on a compound's transmission-blocking activity is unclear. Here, we report the systematic evaluation of the activity loss against gametocytes and investigate the confounding factors contributing to this. A threshold for acceptable activity loss between asexual blood stage parasites and gametocytes was defined, with near-equipotent compounds required to prevent continued gametocyte maturation and onward transmission. Target abundance is not predictive of gametocytocidal activity, but instead, lipoidal uptake is the main barrier of dual activity and is influenced by distinct physicochemical properties. This study provides guidelines for the required profiles of potential dual-active antimalarial agents and facilitates the development of effective transmission-blocking compounds.
Collapse
Affiliation(s)
- Mariska Naude
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Dorè Joubert
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | | | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
- Department of Biochemistry, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
5
|
Miyazaki Y, Miyazaki S. Reporter parasite lines: valuable tools for the study of Plasmodium biology. Trends Parasitol 2024; 40:1000-1015. [PMID: 39389901 DOI: 10.1016/j.pt.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
The human malaria parasite Plasmodium falciparum causes the most severe form of malaria in endemic regions and is transmitted via mosquito bites. To better understand the biology of this deadly pathogen, a variety of P. falciparum reporter lines have been generated using transgenic approaches to express reporter proteins, such as fluorescent proteins and luciferases. This review discusses the advances in recently generated P. falciparum transgenic reporter lines, which will aid in the investigation of parasite physiology and the discovery of novel antimalarial drugs. Future prospects for the generation of new and superior human malaria parasite reporter lines are also discussed, and unresolved questions in malaria biology are highlighted to help boost support for the development and implementation of malaria treatments.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Shinya Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.
| |
Collapse
|
6
|
Dziwornu G, Seanego D, Fienberg S, Clements M, Ferreira J, Sypu VS, Samanta S, Bhana AD, Korkor CM, Garnie LF, Teixeira N, Wicht KJ, Taylor D, Olckers R, Njoroge M, Gibhard L, Salomane N, Wittlin S, Mahato R, Chakraborty A, Sevilleno N, Coyle R, Lee MCS, Godoy LC, Pasaje CF, Niles JC, Reader J, van der Watt M, Birkholtz LM, Bolscher JM, de Bruijni MHC, Coulson LB, Basarab GS, Ghorpade SR, Chibale K. 2,8-Disubstituted-1,5-naphthyridines as Dual Inhibitors of Plasmodium falciparum Phosphatidylinositol-4-kinase and Hemozoin Formation with In Vivo Efficacy. J Med Chem 2024; 67:11401-11420. [PMID: 38918002 PMCID: PMC11247499 DOI: 10.1021/acs.jmedchem.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Structure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of Plasmodium falciparum (Pf) phosphatidylinositol-4-kinase β (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained Plasmodium PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PfPI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of Pf. It was efficacious in the humanized NSG mouse malaria infection model at a single oral dose of 32 mg/kg. This compound was nonteratogenic in the zebrafish embryo model of teratogenicity and has a low predicted human dose, indicating that this series has the potential to deliver a preclinical candidate for malaria.
Collapse
Affiliation(s)
- Godwin
Akpeko Dziwornu
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Donald Seanego
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Stephen Fienberg
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Monica Clements
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jasmin Ferreira
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Venkata S. Sypu
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sauvik Samanta
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Ashlyn D. Bhana
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Constance M. Korkor
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Larnelle F. Garnie
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Nicole Teixeira
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kathryn J. Wicht
- Drug
Discovery and Development Centre (H3D), Department of Chemistry and
Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Ronald Olckers
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Mathew Njoroge
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Liezl Gibhard
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Nicolaas Salomane
- Drug
Discovery and Development Centre (H3D), Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Observatory, Cape Town 7925, South Africa
| | - Sergio Wittlin
- Swiss Tropical
and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | | | | | - Nicole Sevilleno
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Rachael Coyle
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Marcus C. S. Lee
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Luiz C. Godoy
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charisse Flerida Pasaje
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jacquin C. Niles
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Janette Reader
- Department
of Biochemistry, Genetics and Microbiology, Institute
for Sustainable Malaria Control, University
of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariette van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department
of Biochemistry, Genetics and Microbiology, Institute
for Sustainable Malaria Control, University
of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Judith M. Bolscher
- TropIQ Health Sciences, Transistorweg 5, 6534 AT Nijmegen, The Netherlands
| | | | - Lauren B. Coulson
- Drug
Discovery and Development Centre (H3D), Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Observatory, Cape Town 7925, South Africa
| | - Gregory S. Basarab
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Sandeep R. Ghorpade
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery
and Development
Research Unit, Department of Chemistry and Institute of Infectious
Disease and Molecular Medicine, University
of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
7
|
Mbaba M, Golding TM, Omondi RO, Mohunlal R, Egan TJ, Reader J, Birkholtz LM, Smith GS. Exploring the modulatory influence on the antimalarial activity of amodiaquine using scaffold hybridisation with ferrocene integration. Eur J Med Chem 2024; 271:116429. [PMID: 38663284 DOI: 10.1016/j.ejmech.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Amodiaquine (AQ) is a potent antimalarial drug used in combination with artesunate as part of artemisinin-based combination therapies (ACTs) for malarial treatment. Due to the rising emergence of resistant malaria parasites, some of which have been reported for ACT, the usefulness of AQ as an efficacious therapeutic drug is threatened. Employing the organometallic hybridisation approach, which has been shown to restore the antimalarial activity of chloroquine in the form of an organometallic hybrid clinical candidate ferroquine (FQ), the present study utilises this strategy to modulate the biological performance of AQ by incorporating ferrocene. Presently, we have conceptualised ferrocenyl AQ derivatives and have developed facile, practical routes for their synthesis. A tailored library of AQ derivatives was assembled and their antimalarial activity evaluated against chemosensitive (NF54) and multidrug-resistant (K1) strains of the malaria parasite, Plasmodium falciparum. The compounds generally showed enhanced or comparable activities to those of the reference clinical drugs chloroquine and AQ, against both strains, with higher selectivity for the sensitive phenotype, mostly in the double-digit nanomolar IC50 range. Moreover, representative compounds from this series show the potential to block malaria transmission by inhibiting the growth of stage II/III and V gametocytes in vitro. Preliminary mechanistic insights also revealed hemozoin inhibition as a potential mode of action.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Taryn M Golding
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Reinner O Omondi
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Roxanne Mohunlal
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Gregory S Smith
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
8
|
Greyling N, van der Watt M, Gwarinda H, van Heerden A, Greenhouse B, Leroy D, Niemand J, Birkholtz LM. Genetic complexity alters drug susceptibility of asexual and gametocyte stages of Plasmodium falciparum to antimalarial candidates. Antimicrob Agents Chemother 2024; 68:e0129123. [PMID: 38259087 PMCID: PMC10916389 DOI: 10.1128/aac.01291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.
Collapse
Affiliation(s)
- Nicola Greyling
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Hazel Gwarinda
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Bryan Greenhouse
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Reader J, Opperman DFL, van der Watt ME, Theron A, Leshabane M, da Rocha S, Turner J, Garrabrant K, Piña I, Mills C, Woster PM, Birkholtz L. New Transmission-Selective Antimalarial Agents through Hit-to-Lead Optimization of 2-([1,1'-Biphenyl]-4-carboxamido)benzoic Acid Derivatives. Chembiochem 2022; 23:e202200427. [PMID: 36106425 PMCID: PMC10946866 DOI: 10.1002/cbic.202200427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Indexed: 11/12/2022]
Abstract
Malaria elimination requires multipronged approaches, including the application of antimalarial drugs able to block human-to-mosquito transmission of malaria parasites. The transmissible gametocytes of Plasmodium falciparum seem to be highly sensitive towards epidrugs, particularly those targeting demethylation of histone post-translational marks. Here, we report exploration of compounds from a chemical library generated during hit-to-lead optimization of inhibitors of the human histone lysine demethylase, KDM4B. Derivatives of 2-([1,1'-biphenyl]-4-carboxamido) benzoic acid, around either the amide or a sulfonamide linker backbone (2-(arylcarboxamido)benzoic acid, 2-carboxamide (arylsulfonamido)benzoic acid and N-(2-(1H-tetrazol-5-yl)phenyl)-arylcarboxamide), showed potent activity towards late-stage gametocytes (stage IV/V) of P. falciparum, with the most potent compound reaching single digit nanomolar activity. Structure-activity relationship trends were evident and frontrunner compounds also displayed microsomal stability and favourable solubility profiles. Simplified synthetic routes support further derivatization of these compounds for further development of these series as malaria transmission-blocking agents.
Collapse
Affiliation(s)
- Janette Reader
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Daniel F. L. Opperman
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Mariëtte E. van der Watt
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
- School of Health Systems and Public HealthUniversity of Pretoria, HatfieldPretoria0028South Africa
| | - Anjo Theron
- Next Generation HealthCouncil for Scientific and Industrial ResearchPretoria0001South Africa
| | - Meta Leshabane
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Shanté da Rocha
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Jonathan Turner
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Kathleen Garrabrant
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Ivett Piña
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Catherine Mills
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Patrick M. Woster
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Lyn‐Marié Birkholtz
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| |
Collapse
|
10
|
Ng JPL, Han Y, Yang LJ, Birkholtz LM, Coertzen D, Wong HN, Haynes RK, Coghi P, Wong VKW. Antimalarial and antitumour activities of the steroidal quinone-methide celastrol and its combinations with artemiside, artemisone and methylene blue. Front Pharmacol 2022; 13:988748. [PMID: 36120293 PMCID: PMC9479156 DOI: 10.3389/fphar.2022.988748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Artemisinin, isolated from the traditional Chinese medicinal plant qīng hāo 青蒿 (Artemisia annua) and its derivatives are used for treatment of malaria. With treatment failures now being recorded for the derivatives and companion drugs used in artemisinin combination therapies new drug combinations are urgently required. The amino-artemisinins artemiside and artemisone display optimal efficacies in vitro against asexual and sexual blood stages of the malaria parasite Plasmodium falciparum and are active against tumour cell lines. In continuing the evolution of combinations of the amino-artemisinins with new drugs, we examine the triterpenoid quinone methide celastrol isolated from the traditional Chinese medicinal plant léi gōng téng 雷公藤 (Tripterygium wilfordii). This compound is redox active, and has attracted considerable attention because of potent biological activities against manifold targets. We report that celastrol displays good IC50 activities ranging from 0.50–0.82 µM against drug-sensitive and resistant asexual blood stage Pf, and 1.16 and 0.28 µM respectively against immature and late stage Pf NF54 gametocytes. The combinations of celastrol with each of artemisone and methylene blue against asexual blood stage Pf are additive. Given that celastrol displays promising antitumour properties, we examined its activities alone and in combinations with amino-artemisinins against human liver HepG2 and other cell lines. IC50 values of the amino-artemisinins and celastrol against HepG2 cancer cells ranged from 0.55–0.94 µM. Whereas the amino-artemisinins displayed notable selectivities (SI > 171) with respect to normal human hepatocytes, in contrast, celastrol displayed no selectivity (SI < 1). The combinations of celastrol with artemiside or artemisone against HepG2 cells are synergistic. Given the promise of celastrol, judiciously designed formulations or structural modifications are recommended for mitigating its toxicity.
Collapse
Affiliation(s)
- Jerome P. L. Ng
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yu Han
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Jun Yang
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute Malaria for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute Malaria for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, School of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, School of Health Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Richard K. Haynes, Paolo Coghi, Vincent Kam Wai Wong,
| | - Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau, China
- *Correspondence: Richard K. Haynes, Paolo Coghi, Vincent Kam Wai Wong,
| | - Vincent Kam Wai Wong
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- *Correspondence: Richard K. Haynes, Paolo Coghi, Vincent Kam Wai Wong,
| |
Collapse
|