1
|
Zhou QX, Lu DQ, Tian SY, Lv Y, Chen MW, Tian X, Wu YT, Luo FJ, Tan F, Mou YN. Ubiquitin-activating enzyme1 (TgUAE1) acts as a key regulator of Toxoplasma gondii lytic cycle and homeostasis. Commun Biol 2025; 8:728. [PMID: 40348811 PMCID: PMC12065787 DOI: 10.1038/s42003-025-08149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Ubiquitylation, regulated by the ubiquitin-proteasome system (UPS), is crucial for cell division and cycle transitions in Toxoplasma gondii. However, the primary E1 ubiquitin-activating enzyme (UAE1) in this process has been unclear. This study identified and characterized TGGT1_290290 (TgUAE1) as the canonical E1 enzyme in T. gondii. Through a combination of bioinformatics, biochemical, pharmacological, and genetic approaches, TgUAE1 was shown to exhibit typical E1 activity, particularly in forming K48- and K63-linked polyubiquitin chains. TAK-243, a UAE1 inhibitor, can effectively inhibit the ubiquitin pathway in T. gondii, as thermal stabilization experiments identified TgUAE1 as its intracellular target. Disruption of TgUAE1 severely impaired parasite homeostasis and suppressed the lytic cycle, highlighting its critical role in T. gondii fitness. Mutation of C634 in TgUAE1 confirmed that its enzymatic activity is essential for function. Transcriptomics and quantitative ubiquitin proteomics revealed TgUAE1 as a key regulator of the ubiquitination process and the broader gene expression network in T. gondii. These findings not only underscore the indispensable role of TgUAE1 in the life cycle of T. gondii but also offer valuable data that could inform future studies on parasite biology and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Qi-Xin Zhou
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dai-Qiang Lu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Si-Yu Tian
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yao Lv
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ming-Wei Chen
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Tian
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yan-Tao Wu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fang-Jun Luo
- Department of Clinical Laboratory, Zhuji People's Hospital, Zhuji, Zhejiang, China
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Ya-Ni Mou
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
2
|
Sheng K, Song K, Yang Y, Wu H, Du Z, Chen X, Yang Y, Ma G, Du A. Phosphatase UBLCP1 is required for the growth, virulence and mitochondrial integrity of Toxoplasma gondii. Parasit Vectors 2025; 18:122. [PMID: 40156024 PMCID: PMC11951701 DOI: 10.1186/s13071-025-06766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND The mitochondrion is proposed as an ideal target organelle for the control of apicomplexan parasites, whose integrity depends on well-controlled protein import, folding, and turnover. The ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1) was found to be associated with the mitochondrial integrity in Toxoplasma gondii. However, little is known about the roles and mechanisms of UBLCP1 in this apicomplexan parasite. METHODS The subcellular localization of UBLCP1 in the tachyzoites of T. gondii was determined by an indirect immunofluorescence assay. The roles of UBLCP1 in the growth, cell cycle, and division of T. gondii were assessed by knocking out this molecule in the tachyzoites. Comparative phosphoproteomics between the UBLCP1-deficient and wild-type tachyzoites were performed to understand the roles of UBLCP1 in T. gondii. The virulence of UBLCP1-deficient tachyzoites of T. gondii was tested in mice. RESULTS UBLCP1 is expressed in the nucleus and cytoplasm of T. gondii tachyzoites. Tachyzoites lacking UBLCP1 exhibit collapsed mitochondrion, decreased mitochondrial membrane potential, and compromised growth and proliferation in vitro. Proteins involved in protein turnover and intracellular trafficking have been found differentially phosphorylated in the UBLCP1-deficient tachyzoites compared with the control. Deletion of UBLCP1 also shows that this phosphatase is essential for the propagation and virulence of T. gondii tachyzoites. Mice immunized with UBLCP1-deficient T. gondii tachyzoites survived challenges with the virulent PRU or VEG strain. CONCLUSIONS UBLCP1 is required for the mitochondrial integrity and essential in the lytic cycle (e.g., host cell invasion and parasite replication) in vitro and the pathogenicity of this parasite in vivo. UBLCP1 is a candidate target for a vaccine or a drug for toxoplasmosis in animals.
Collapse
Affiliation(s)
- Kaiyin Sheng
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, 312500, China
| | - Kaiyue Song
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yimin Yang
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Haiyan Wu
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhendong Du
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xueqiu Chen
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Yang
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Ma
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, 312500, China.
| | - Aifang Du
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Elahi R, Dinis LR, Swift RP, Liu HB, Prigge ST. tRNA modifying enzymes MnmE and MnmG are essential for Plasmodium falciparum apicoplast maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.21.629855. [PMID: 39763917 PMCID: PMC11702754 DOI: 10.1101/2024.12.21.629855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The circular genome of the Plasmodium falciparum apicoplast contains a complete minimal set of tRNAs, positioning the apicoplast as an ideal model for studying the fundamental factors required for protein translation. Modifications at tRNA wobble base positions, such as xm5s2U, are critical for accurate protein translation. These modifications are ubiquitously found in tRNAs decoding two-family box codons ending in A or G in prokaryotes and in eukaryotic organelles. Here, we investigated the xm5s2U biosynthetic pathway in the apicoplast organelle of P. falciparum. Through comparative genomics, we identified orthologs of enzymes involved in this process: SufS, MnmA, MnmE, and MnmG. While SufS and MnmA were previously shown to catalyze s2U modifications, we now show that MnmE and MnmG are apicoplast-localized and contain features required for xm5s2U biosynthetic activity. Notably, we found that P. falciparum lacks orthologs of MnmC, MnmL, and MnmM, suggesting that the parasites contain a minimal xm5s2U biosynthetic pathway similar to that found in bacteria with reduced genomes. Deletion of either MnmE or MnmG resulted in apicoplast disruption and parasite death, mimicking the phenotype observed in ΔmnmA and ΔsufS parasites. Our data strongly support the presence and essentiality of xm5s2U modifications in apicoplast tRNAs. This study advances our understanding of the minimal requirements for protein translation in the apicoplast organelle.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Luciana Ribeiro Dinis
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Small-Saunders JL, Sinha A, Bloxham TS, Hagenah LM, Sun G, Preiser PR, Dedon PC, Fidock DA. tRNA modification reprogramming contributes to artemisinin resistance in Plasmodium falciparum. Nat Microbiol 2024; 9:1483-1498. [PMID: 38632343 PMCID: PMC11153160 DOI: 10.1038/s41564-024-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Plasmodium falciparum artemisinin (ART) resistance is driven by mutations in kelch-like protein 13 (PfK13). Quiescence, a key aspect of resistance, may also be regulated by a yet unidentified epigenetic pathway. Transfer RNA modification reprogramming and codon bias translation is a conserved epitranscriptomic translational control mechanism that allows cells to rapidly respond to stress. We report a role for this mechanism in ART-resistant parasites by combining tRNA modification, proteomic and codon usage analyses in ring-stage ART-sensitive and ART-resistant parasites in response to drug. Post-drug, ART-resistant parasites differentially hypomodify mcm5s2U on tRNA and possess a subset of proteins, including PfK13, that are regulated by Lys codon-biased translation. Conditional knockdown of the terminal s2U thiouridylase, PfMnmA, in an ART-sensitive parasite background led to increased ART survival, suggesting that hypomodification can alter the parasite ART response. This study describes an epitranscriptomic pathway via tRNA s2U reprogramming that ART-resistant parasites may employ to survive ART-induced stress.
Collapse
Affiliation(s)
- Jennifer L Small-Saunders
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA.
| | - Ameya Sinha
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Talia S Bloxham
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Fidock
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Lee BST, Sinha A, Dedon P, Preiser P. Charting new territory: The Plasmodium falciparum tRNA modification landscape. Biomed J 2024; 48:100745. [PMID: 38734409 PMCID: PMC12002611 DOI: 10.1016/j.bj.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
Ribonucleoside modifications comprising the epitranscriptome are present in all organisms and all forms of RNA, including mRNA, rRNA and tRNA, the three major RNA components of the translational machinery. Of these, tRNA is the most heavily modified and the tRNA epitranscriptome has the greatest diversity of modifications. In addition to their roles in tRNA biogenesis, quality control, structure, cleavage, and codon recognition, tRNA modifications have been shown to regulate gene expression post-transcriptionally in prokaryotes and eukaryotes, including humans. However, studies investigating the impact of tRNA modifications on gene expression in the malaria parasite Plasmodium falciparum are currently scarce. Current evidence shows that the parasite has a limited capacity for transcriptional control, which points to a heavier reliance on strategies for posttranscriptional regulation, such as tRNA epitranscriptome reprogramming. This review addresses the known functions of tRNA modifications in the biology of P. falciparum while highlighting the potential therapeutic opportunities and the value of using P. falciparum as a model organism for addressing several open questions related to the tRNA epitranscriptome.
Collapse
Affiliation(s)
- Benjamin Sian Teck Lee
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore
| | - Ameya Sinha
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Peter Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Peter Preiser
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
6
|
Guo G, Lin Y, Zhu X, Ding F, Xue X, Zhang Q. Emerging roles of the epitranscriptome in parasitic protozoan biology and pathogenesis. Trends Parasitol 2024; 40:214-229. [PMID: 38355313 DOI: 10.1016/j.pt.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
RNA modifications (epitranscriptome) - such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ) - modulate RNA processing, stability, interaction, and translation, thereby playing critical roles in the development, replication, virulence, metabolism, and life cycle adaptations of parasitic protozoa. Here, we summarize potential homologs of the major human RNA modification regulatory factors in parasites, outline current knowledge on how RNA modifications affect parasitic protozoa, highlight the regulation of RNA modifications and their crosstalk, and discuss current progress in exploring RNA modifications as potential drug targets. This review contributes to our understanding of epitranscriptomic regulation of parasitic protozoa biology and pathogenesis and provides new perspectives for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yutong Lin
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Xinqi Zhu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Feng Ding
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Qingfeng Zhang
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital; Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
7
|
Xia J, Yang Y, Chen X, Song K, Ma G, Yang Y, Yao C, Du A. An apicoplast-localized deubiquitinase contributes to the cell growth and apicoplast homeostasis of Toxoplasma gondii. Vet Res 2024; 55:10. [PMID: 38233899 PMCID: PMC10795397 DOI: 10.1186/s13567-023-01261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Toxoplasma gondii is among the most important parasites worldwide. The apicoplast is a unique organelle shared by all Apicomplexan protozoa. Increasing lines of evidence suggest that the apicoplast possesses its own ubiquitination system. Deubiquitination is a crucial step executed by deubiquitinase (DUB) during protein ubiquitination. While multiple components of ubiquitination have been identified in T. gondii, the deubiquitinases involved remain unknown. The aim of the current study was to delineate the localization of TgOTU7 and elucidate its functions. TgOTU7 was specifically localized at the apicoplast, and its expression was largely regulated during the cell cycle. Additionally, TgOTU7 efficiently breaks down ubiquitin chains, exhibits linkage-nonspecific deubiquitinating activity and is critical for the lytic cycle and apicoplast biogenesis, similar to the transcription of the apicoplast genome and the nuclear genes encoding apicoplast-targeted proteins. Taken together, the results indicate that the newly described deubiquitinase TgOTU7 specifically localizes to the apicoplast and affects the cell growth and apicoplast homeostasis of T. gondii.
Collapse
Affiliation(s)
- Jie Xia
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kaiyue Song
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Saint Kitts and Nevis.
| | - Aifang Du
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
8
|
Zhao M, Yang Y, Shi Y, Chen X, Yang Y, Pan L, Du Z, Sun H, Yao C, Ma G, Du A. PP2Acα-B'/PR61 Holoenzyme of Toxoplasma gondii Is Required for the Amylopectin Metabolism and Proliferation of Tachyzoites. Microbiol Spectr 2023; 11:e0010423. [PMID: 37199633 PMCID: PMC10269777 DOI: 10.1128/spectrum.00104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Here, we report that the inhibition of the PP2A subfamily by okadaic acid results in an accumulation of polysaccharides in the acute infection stage (tachyzoites) of Toxoplasma gondii, which is a protozoan of global zoonotic importance and a model for the apicomplexan parasites. The loss of the catalytic subunit α of PP2A (ΔPP2Acα) in RHΔku80 leads to the polysaccharide accumulation phenotype in the base of tachyzoites as well as residual bodies and significantly compromises the intracellular growth in vitro and the virulence in vivo. A metabolomic analysis revealed that the accumulated polysaccharides in ΔPP2Acα are derived from interrupted glucose metabolism, which affects the production of ATP and energy homeostasis in the T. gondii knockout. The assembly of the PP2Acα holoenzyme complex involved in the amylopectin metabolism in tachyzoites is possibly not regulated by LCMT1 or PME1, and this finding contributes to the identification of the regulatory B subunit (B'/PR61). The loss of B'/PR61 results in the accumulation of polysaccharide granules in the tachyzoites as well as reduced plaque formation ability, exactly the same as ΔPP2Acα. Taken together, we have identified a PP2Acα-B'/PR61 holoenzyme complex that plays a crucial role in the carbohydrate metabolism and viability in T. gondii, and its deficiency in function remarkably suppresses the growth and virulence of this important zoonotic parasite both in vitro and in vivo. Hence, rendering the PP2Acα-B'/PR61 holoenzyme functionless should be a promising strategy for the intervention of Toxoplasma acute infection and toxoplasmosis. IMPORTANCE Toxoplasma gondii switches back and forth between acute and chronic infections, mainly in response to host immunologic status, which is characterized by flexible but specific energy metabolism. Polysaccharide granules are accumulated in the acute infection stage of T. gondii that have been exposed to a chemical inhibitor of the PP2A subfamily. The genetic depletion of the catalytic subunit α of PP2A leads to this phenotype and significantly affects the cell metabolism, energy production, and viability. Further, a regulatory B subunit PR61 is necessary for the PP2A holoenzyme to function in glucose metabolism and in the intracellular growth of T. gondii tachyzoites. A deficiency of this PP2A holoenzyme complex (PP2Acα-B'/PR61) in T. gondii knockouts results in the abnormal accumulation of polysaccharides and the disruption of energy metabolism, suppressing their growth and virulence. These findings provide novel insights into cell metabolism and identify a potential target for an intervention against a T. gondii acute infection.
Collapse
Affiliation(s)
- Mingxiu Zhao
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yue Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lingtao Pan
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hongchao Sun
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang Province, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Swift RP, Elahi R, Rajaram K, Liu HB, Prigge ST. The Plasmodium falciparum apicoplast cysteine desulfurase provides sulfur for both iron-sulfur cluster assembly and tRNA modification. eLife 2023; 12:e84491. [PMID: 37166116 PMCID: PMC10219651 DOI: 10.7554/elife.84491] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
Iron-sulfur clusters (FeS) are ancient and ubiquitous protein cofactors that play fundamental roles in many aspects of cell biology. These cofactors cannot be scavenged or trafficked within a cell and thus must be synthesized in any subcellular compartment where they are required. We examined the FeS synthesis proteins found in the relict plastid organelle, called the apicoplast, of the human malaria parasite Plasmodium falciparum. Using a chemical bypass method, we deleted four of the FeS pathway proteins involved in sulfur acquisition and cluster assembly and demonstrated that they are all essential for parasite survival. However, the effect that these deletions had on the apicoplast organelle differed. Deletion of the cysteine desulfurase SufS led to disruption of the apicoplast organelle and loss of the organellar genome, whereas the other deletions did not affect organelle maintenance. Ultimately, we discovered that the requirement of SufS for organelle maintenance is not driven by its role in FeS biosynthesis, but rather, by its function in generating sulfur for use by MnmA, a tRNA modifying enzyme that we localized to the apicoplast. Complementation of MnmA and SufS activity with a bacterial MnmA and its cognate cysteine desulfurase strongly suggests that the parasite SufS provides sulfur for both FeS biosynthesis and tRNA modification in the apicoplast. The dual role of parasite SufS is likely to be found in other plastid-containing organisms and highlights the central role of this enzyme in plastid biology.
Collapse
Affiliation(s)
- Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Hans B Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| |
Collapse
|
10
|
Müller J, Hemphill A. Toxoplasma gondii infection: novel emerging therapeutic targets. Expert Opin Ther Targets 2023; 27:293-304. [PMID: 37212443 PMCID: PMC10330558 DOI: 10.1080/14728222.2023.2217353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production, and welfare. So far, only a limited panel of drugs has been marketed for clinical applications. In addition to classical screening, the investigation of unique targets of the parasite may lead to the identification of novel drugs. AREAS COVERED Herein, the authors describe the methodology to identify novel drug targets in Toxoplasma gondii and review the literature with a focus on the last two decades. EXPERT OPINION Over the last two decades, the investigation of essential proteins of T. gondii as potential drug targets has fostered the hope of identifying novel compounds for the treatment of toxoplasmosis. Despite good efficacies in vitro, only a few classes of these compounds are effective in suitable rodent models, and none has cleared the hurdle to applications in humans. This shows that target-based drug discovery is in no way better than classical screening approaches. In both cases, off-target effects and adverse side effects in the hosts must be considered. Proteomics-driven analyses of parasite- and host-derived proteins that physically bind drug candidates may constitute a suitable tool to characterize drug targets, irrespectively of the drug discovery methods.
Collapse
Affiliation(s)
- Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Yang Y, Yao C, Chen X, Sheng K, Zhao M, Yao C, Yang Y, Ma G, Du A. Redundant targeting signals of the apicoplast-resident protein TgMnmA in Toxoplasma gondii involve trans-organellar function. Vet Parasitol 2023; 315:109888. [PMID: 36731210 DOI: 10.1016/j.vetpar.2023.109888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/23/2023]
Abstract
The apicoplast, which is the result of secondary endosymbiosis, is a distinctive subcellular organelle and a crucial therapeutic target for apicomplexan parasites. The majority of apicoplast-resident proteins are encoded by the nuclear genome and target the apicoplast via bipartite targeting signals consisting of a signal peptide and a transit peptide. The properties and functions of these peptides are poorly understood, which hinders the identification of apicoplast proteins and the study for plastid evolution. Here, the targeting signals of the recently discovered apicoplast tRNA thiouridylase TgMnmA of Toxoplasma gondii were analyzed. Our data using a reporter (the enhanced green fluorescent protein) fused with individual fragments containing various numbers of its N-terminal amino acids unequivocally revealed that the first 28 amino acids of TgMnmA functioned as a signal peptide for cellular secretion. The N-terminal 150 amino acids were sufficient to direct the fusion protein to the apicoplast, whereas its deletion caused the fusion protein to be localized to the mitochondrion. Our data further demonstrated that the apicoplast, rhoptry, and mitochondrion shared similar targeting signals, indicating that the apicoplast localization peptide was trans-organellar in function. In addition, the apicoplast localization peptide was important for the healthy proliferation of tachyzoites. In conclusion, the targeting signals of the nucleus-encoded apicoplast-targeted protein TgMnmA have been mapped out and the importance of this localization peptide has been elucidated in the current study.
Collapse
Affiliation(s)
- Yimin Yang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chenqian Yao
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kaiyin Sheng
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingxiu Zhao
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts and Nevis
| | - Yi Yang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
12
|
Catacalos C, Krohannon A, Somalraju S, Meyer KD, Janga SC, Chakrabarti K. Epitranscriptomics in parasitic protists: Role of RNA chemical modifications in posttranscriptional gene regulation. PLoS Pathog 2022; 18:e1010972. [PMID: 36548245 PMCID: PMC9778586 DOI: 10.1371/journal.ppat.1010972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
"Epitranscriptomics" is the new RNA code that represents an ensemble of posttranscriptional RNA chemical modifications, which can precisely coordinate gene expression and biological processes. There are several RNA base modifications, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ), etc. that play pivotal roles in fine-tuning gene expression in almost all eukaryotes and emerging evidences suggest that parasitic protists are no exception. In this review, we primarily focus on m6A, which is the most abundant epitranscriptomic mark and regulates numerous cellular processes, ranging from nuclear export, mRNA splicing, polyadenylation, stability, and translation. We highlight the universal features of spatiotemporal m6A RNA modifications in eukaryotic phylogeny, their homologs, and unique processes in 3 unicellular parasites-Plasmodium sp., Toxoplasma sp., and Trypanosoma sp. and some technological advances in this rapidly developing research area that can significantly improve our understandings of gene expression regulation in parasites.
Collapse
Affiliation(s)
- Cassandra Catacalos
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Alexander Krohannon
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Sahiti Somalraju
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| |
Collapse
|