1
|
Saticioglu IB, Ay H, Altun S, Ajmi N, Gunduz ES, Gocmen H, Duman M. Comprehensive genome analysis of five novel flavobacteria: Flavobacterium piscisymbiosum sp. nov., Flavobacterium pisciphilum sp. nov., Flavobacterium flavipigmentatum sp. nov., Flavobacterium lipolyticum sp. nov. and Flavobacterium cupriresistens sp. nov. Syst Appl Microbiol 2024; 47:126518. [PMID: 38761464 DOI: 10.1016/j.syapm.2024.126518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Eight isolates were obtained through a study on culture-dependent bacteria from fish farms and identified as members of the genus Flavobacterium based on pairwise analysis of the 16S rRNA gene sequences. The highest pairwise identity values were calculated as 98.8 % for strain F-30 T and Flavobacterium bizetiae, 99.0 % for strain F-65 T and Flavobacterium branchiarum, 98.7 % for strain F-126 T and Flavobacterium tructae, 98.2 % for strain F-323 T and Flavobacterium cupreum while 99.7 % identity level was detected for strain F-70 T and Flavobacterium geliluteum. In addition, strains F-33, Fl-77, and F-70 T shared 100 % identical 16S rRNA genes, while strains F-323 T and Fl-318 showed 99.9 % identity. A polyphasic approach including comparative analysis of whole-genome data was employed to ascertain the taxonomic provenance of the strains. In addition to the morphological, physiological, biochemical and chemotaxonomic characteristics of the strains, the overall genome-relatedness indices of dDDH and ANI below the established thresholds confirmed the classification of the strains as five novel species within the genus Flavobacterium. The comprehensive genome analyses of the strains were also conducted to determine the biosynthetic gene clusters, virulence features and ecological distribution patterns. Based on the polyphasic characterisations, including comparative genome analyses, it is concluded that strains F-30 T, F-65 T, F-70 T, F126T and F-323 T represent five novel species within the genus Flavobacterium for which Flavobacterium piscisymbiosum sp. nov. F-30 T (=JCM 34194 T = KCTC 82254 T), Flavobacterium pisciphilum sp. nov. F-65 T (=JCM 34197 T = KCTC 82257 T), Flavobacterium flavipigmentatum sp. nov. F-70 T (Fl-33 = Fl-77 = JCM 34198 T = KCTC 82258 T), Flavobacterium lipolyticum sp. nov. F-126 T (JCM 34199 T = KCTC 82259 T) and Flavobacterium cupriresistens sp. nov. F-323 T (Fl-318 = JCM 34200 T = KCTC 82260 T), are proposed.
Collapse
Affiliation(s)
- Izzet Burcin Saticioglu
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey.
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Soner Altun
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey
| | - Nihed Ajmi
- Graduate School of Health Sciences, Bursa Uludag University, Bursa, 16059, Turkey
| | - Enes Said Gunduz
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey
| | - Huban Gocmen
- Department of Microbiology, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Muhammed Duman
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey
| |
Collapse
|
2
|
Dong WJ, Xu MD, Yang XW, Yang XM, Long XZ, Han XY, Cui LY, Tong Q. Rice straw ash and amphibian health: A deep dive into microbiota changes and potential ecological consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171651. [PMID: 38490417 DOI: 10.1016/j.scitotenv.2024.171651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Rice straw is burned as a result of agricultural practices and technical limitations, generating significant volumes of ash that might have environmental and ecological consequences; however, the effects on organisms have not been researched. Amphibians depend on their gut and skin microbiomes. Ash exposure may cause inflammation and changes in microbial diversity and function in frogs' skin and gut microbiota due to its chemical composition and physical presence, but the implications remain unclear. Rana dybowskii were exposed to five aqueous extracts of ashes (AEA) concentrations for 30 days to study survival, metal concentrations, and microbial diversity, analyzing the microbiota of the cutaneous and gut microbiota using Illumina sequencing. Dominant elements in ash: K > Ca > Mg > Na > Al > Fe. In AEA, K > Na > Ca > Mg > As > Cu. Increased AEA concentrations significantly reduced frog survival. Skin microbiota alpha diversity varied significantly among all treatment groups, but not gut microbiota. Skin microbiota differed significantly across treatments via Bray-Curtis and weighted UniFrac; gut microbiota was only affected by Bray-Curtis. Skin microbiota varied significantly with AEA levels in Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes, while the gut microbiota's dominant phyla, Firmicutes, Bacteroidetes, and Proteobacteria, remained consistent across all groups. Lastly, the functional prediction showed that the skin microbiota had big differences in how it worked and looked, which were linked to different health and environmental adaptation pathways. The gut microbiota, on the other hand, had smaller differences. In conclusion, AEA exposure affects R. dybowskii survival and skin microbiota diversity, indicating potential health and ecological impacts, with less effect on gut microbiota.
Collapse
Affiliation(s)
- Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xue-Wen Yang
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiu-Mei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Miranda CD, Irgang R, Concha C, Rojas R, Avendaño-Herrera R. Phenotypic and genomic characterization of a non-pathogenic Epilithonimonas ginsengisoli isolated from diseased farmed rainbow trout (Oncorhynchus mykiss) in Chile. JOURNAL OF FISH DISEASES 2024; 47:e13897. [PMID: 38031399 DOI: 10.1111/jfd.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Flavobacterial infection associated with diseased fish is caused by multiple bacterial species within the family Flavobacteriaceae. In the present study, the Chilean isolate FP99, from the gills of a diseased, farmed rainbow trout (Oncorhynchus mykiss), was characterized using phenotypic and genomic analyses. Additionally assessed was pathogenic activity. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that isolate FP99 belonged to the genus Epilithonimonas, an average nucleotide identity value of 100% was detected with the Chilean isolate identified as Epilithonimonas sp. FP211-J200. In silico genome analysis, mechanisms for toxins production, and superantigens, adhesion, or other genes associated with virulence were not detected. However, genes encoding proteins for antibiotic resistance were found, including the chrA gene and the nucleotide sequence that encodes for multiple antibiotic resistance MarC proteins. Furthermore, the blaESP-1 gene (87.85% aminoacidic sequence identity), encoding an extended-spectrum subclass B3 metallo-β-lactamase and conferring carbapenem-hydrolysing activity, and the tet(X) gene, which encodes a monooxygenase that catalyses the degradation of tetracycline-class antimicrobials were carried by this isolate. Phenotyping analyses also supported assignment as E. ginsengisoli. Challenge trials against healthy rainbow trout resulted in no observed pathogenic effect. Our findings identify for the first time the species E. ginsengisoli as associated with fish farming, suggesting that this isolate may be a component of the microbiota of the freshwater system. Notwithstanding, poor environmental conditions and any stressors associated with aquaculture situations or lesions caused by other pathogenic bacteria, such as F. psychrophilum, could favour the entry of E. ginsengisoli into rainbow trout.
Collapse
Affiliation(s)
- Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
- Centro Tecnológico de Innovación Acuícola AquaPacífico, Coquimbo, Chile
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
- Centro Tecnológico de Innovación Acuícola AquaPacífico, Coquimbo, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|