1
|
Hu M, Li Y, Zhao L, Cha S, Fang Y, Xue C, Dong N. Thymidylate Kinase-Targeted Antimicrobial Peptides via Phage Display: A Novel Strategy against Gram-Negative Bacteria. J Med Chem 2025; 68:5488-5502. [PMID: 39995327 DOI: 10.1021/acs.jmedchem.4c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The rise of antimicrobial resistance (AMR) in Gram-negative bacteria, including Escherichia coli (E. coli), poses a major public health threat. This study aimed to address the limitations of existing antimicrobial peptides (AMPs) by designing hybrid peptides with enhanced targeting and antibacterial potency. Eight heptapeptide sequences were identified through phage display screening and hybridized with WP (WKKIWKPGIKKWIK), a peptide exhibiting weak antimicrobial activity against Gram-negative bacteria. The hybrid peptides were systematically evaluated for their antimicrobial activity, specificity, and biocompatibility. The hybrid peptide SWP exhibited superior antibacterial activity, particularly against E. coli K88 (TI = 2.378), and demonstrated specific binding to thymidylate kinase (TMK), a key bacterial enzyme. In vivo studies employing a mouse peritonitis model confirmed SWP's ability to reduce bacterial loads and mitigate tissue damage while maintaining excellent biocompatibility. These findings underscore SWP as a promising candidate for the development of targeted antimicrobial agents with enhanced specificity and stability for Gram-negative pathogens.
Collapse
Affiliation(s)
- Mingyang Hu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuwen Li
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lu Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Sina Cha
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
2
|
Talubo NDD, Dela Cruz EWB, Fowler PMPT, Tsai PW, Tayo LL. QSAR-Based Drug Repurposing and RNA-Seq Metabolic Networks Highlight Treatment Opportunities for Hepatocellular Carcinoma Through Pyrimidine Starvation. Cancers (Basel) 2025; 17:903. [PMID: 40075750 PMCID: PMC11898721 DOI: 10.3390/cancers17050903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: The molecular heterogeneity and metabolic flexibility of Hepatocellular Carcinoma (HCC) pose significant challenges to the efficacy of systemic therapy for advanced cases. Early screening difficulties often delay diagnosis, leading to more advanced stages at presentation. Combined with the inconsistent responses to current systemic therapies, HCC continues to have one of the highest mortality rates among cancers. Thus, this paper seeks to contribute to the development of systemic therapy options through the consideration of HCC's metabolic vulnerabilities and lay the groundwork for future in vitro studies. Methods: Transcriptomic data were used to calculate single and double knockout options for HCC using genetic Minimal Cut Sets. Furthermore, using QSAR modeling, drug repositioning opportunities were assessed to inhibit the selected genes. Results: Two single knockout options that were also annotated as essential pairs were found within the pyrimidine metabolism pathway of HCC, wherein the knockout of either DHODH or TYMS is potentially disruptive to proliferation. The result of the flux balance analysis and gene knockout simulation indicated a significant decrease in biomass production. Three machine learning algorithms were assessed for their performance in predicting the pIC50 of a given compound for the selected genes. SVM-rbf performed the best on unseen data achieving an R2 of 0.82 for DHODH and 0.81 for TYMS. For DHODH, the drugs Oteseconazole, Tipranavir, and Lusutrombopag were identified as potential inhibitors. For TYMS, the drugs Tadalafil, Dabigatran, Baloxavir Marboxil, and Candesartan Cilexetil showed promise as inhibitors. Conclusions: Overall, this study suggests in vitro testing of the identified drugs to assess their capabilities in inducing pyrimidine starvation on HCC.
Collapse
Affiliation(s)
- Nicholas Dale D. Talubo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (N.D.D.T.); (E.W.B.D.C.); (P.M.P.T.F.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Emery Wayne B. Dela Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (N.D.D.T.); (E.W.B.D.C.); (P.M.P.T.F.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Peter Matthew Paul T. Fowler
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (N.D.D.T.); (E.W.B.D.C.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1203, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1203, Philippines
| |
Collapse
|
3
|
Fatima M, An T, Park PG, Hong KJ. Advancements and Challenges in Addressing Zoonotic Viral Infections with Epidemic and Pandemic Threats. Viruses 2025; 17:352. [PMID: 40143281 PMCID: PMC11946417 DOI: 10.3390/v17030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Zoonotic viruses have significant pandemic potential, as evidenced by the coronavirus pandemic, which underscores that zoonotic infections have historically caused numerous outbreaks and millions of deaths over centuries. Zoonotic viruses induce numerous types of illnesses in their natural hosts. These viruses are transmitted to humans via biological vectors, direct contact with infected animals or their bites, and aerosols. Zoonotic viruses continuously evolve and adapt to human hosts, resulting in devastating consequences. It is very important to understand pathogenesis pathways associated with zoonotic viral infections across various hosts and develop countermeasure strategies accordingly. In this review, we briefly discuss advancements in diagnostics and therapeutics for zoonotic viral infections. It provides insight into recent outbreaks, viral dynamics, licensed vaccines, as well as vaccine candidates progressing to clinical investigations. Despite advancements, challenges persist in combating zoonotic viruses due to immune evasion, unpredicted outbreaks, and the complexity of the immune responses. Most of these viruses lack effective treatments and vaccines, relying entirely on supportive care and preventive measures. Exposure to animal reservoirs, limited vaccine access, and insufficient coverage further pose challenges to preventive efforts. This review highlights the critical need for ongoing interdisciplinary research and collaboration to strengthen preparedness and response strategies against emerging infectious threats.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
4
|
Halder SK, Sultana A, Himel MK, Shil A. Monkeypox: Origin, Transmission, Clinical Manifestations, Prevention, and Therapeutic Options. Interdiscip Perspect Infect Dis 2025; 2025:2522741. [PMID: 39950190 PMCID: PMC11824817 DOI: 10.1155/ipid/2522741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 02/16/2025] Open
Abstract
Monkeypox is a rapidly spreading transmissible disease induced by the monkeypox virus (MPXV), a major public health problem worldwide. The origin of monkeypox might be tracked to the continent of Africa, where it first afflicted primate species prior to spreading to the world. Severe health issues for the public have been raised as a result of the disease's current breakouts in nonendemic areas and its subsequent dissemination to several nations throughout the globe. Monkeypox spreads by having contact with infected creatures or people, as well as respiratory droplets and contaminated things. Symptoms of monkeypox in young children and adults are different. While the symptoms are similar to smallpox, monkeypox has a reduced mortality rate. Proper diagnosis, suitable care, and focused preventative efforts all depend on becoming cognizant of those distinctions. Numerous promising therapeutic approaches have been recently investigated. Antiviral drugs such as tecovirimat, cidofovir, and brincidofovir, which were initially developed to treat smallpox, were found to have been effective in treating MPXV cases. Moreover, vaccinations continue to be an important preventative step. The purpose of this article is to offer the most recent and thorough information available on monkeypox, including its possible causes, modes of transfer, and potential treatments. By identifying the distinct forms of monkeypox and exploring potential treatment options, this work contributes to the ongoing battle against MPXVs and the management of this novel viral disease. To stop the propagation of monkeypox, greater research and communication are needed to provide stronger treatments and effective vaccinations.
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Division of Computational Biology, Padma Bioresearch, Savar, Dhaka, Bangladesh
| | - Arafin Sultana
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Mahbubul Kabir Himel
- Division of Computational Biology, Padma Bioresearch, Savar, Dhaka, Bangladesh
- Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Aparna Shil
- Division of Computational Biology, Padma Bioresearch, Savar, Dhaka, Bangladesh
- Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
5
|
Al-Nasser F, Taha M, Rahim F, Adalat B, Chigurupati S, Nawaz M, Ajmal A, Wadood A, Uddin N, Khan KM, Ali shah SA, Felemban SG, Venugopal V. Synthesis of novel indazole derivatives as inhibitors of diabetics II along with molecular docking and simulation study. J Mol Struct 2025; 1322:140394. [DOI: 10.1016/j.molstruc.2024.140394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Hayat C, Yaseen M, Ahmad S, Khalid K, Alamri MA, Khalid A, Shah SQ, Ejiohuo O, Wadood A, Maigoro AY, Kwon HW. Elucidating the interactions of advanced glycation end products with RAGE, employing molecular docking and MD simulation approaches: Implications of potent therapeutic for diabetes and its related complications. J Mol Liq 2024; 416:126467. [DOI: 10.1016/j.molliq.2024.126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Imani S, Aminnezhad S, Alikarami M, Abedi Z, Mosleh IS, Maghsoudloo M, Taheri Z. Exploration of drug repurposing for Mpox outbreaks targeting gene signatures and host-pathogen interactions. Sci Rep 2024; 14:29436. [PMID: 39604570 PMCID: PMC11603026 DOI: 10.1038/s41598-024-79897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Monkeypox (Mpox) is a growing public health concern, with complex interactions within host systems contributing to its impact. This study employs multi-omics approaches to uncover therapeutic targets and potential drug repurposing opportunities to better understand Mpox's molecular pathogenesis. We developed an in silico host-pathogen interaction (HPI) network and applied weighted gene co-expression network analysis (WGCNA) to explore interactions between Mpox and host proteins. Subtype-specific host-pathogen protein-protein interaction networks were constructed, and key modules from the HPI and WGCNA were integrated to identify significant host proteins. To predict upstream signaling pathways and transcription factors, we used eXpression2Kinases and ChIP-X Enrichment Analysis. The multi-Steiner trees method was applied to compare our findings with those from FDA-approved antiviral drugs. Analysis of 55 differentially expressed genes in Mpox infection revealed 11 kinases and 15 transcription factors as key regulators. We identified 16 potential drug targets, categorized into 8 proviral genes (ESR2, ERK1, ERK2, P38, JNK1, CDK4, GSK3B, STAT3) designated for inhibition, and 8 antiviral genes (IKKA, HDAC1, HIPK2, TF65, CSK21, HIPK2, ESR2, GSK3B) designated for activation. Proviral genes are involved in the AKT, Wnt, and STAT3 pathways, while antiviral genes impact the AP-1, NF-κB, apoptosis, and IFN pathways. Promising FDA-approved candidates were identified, including kinase inhibitors, steroid hormone receptor agonists, STAT3 inhibitors, and notably Niclosamide. This study enhances our understanding of Mpox by identifying key therapeutic targets and potential repurposable drugs, providing a valuable framework for developing new treatments.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.
| | - Sargol Aminnezhad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Moslem Alikarami
- Research and Development Center, Dina Pharmed Exir Salamat Co, Tehran, Iran
| | - Zahra Abedi
- School of Biotechnology College of Science, University of Tehran, Tehran, Iran
| | - Iman Samei Mosleh
- Plant Functional Genomics Lab, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Vienna, Austria
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zahra Taheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Li J, Hao Y, Wu L, Liang H, Ni L, Wang F, Wang S, Duan Y, Xu Q, Xiao J, Yang D, Gao G, Ding Y, Gao C, Xiao J, Zhao H. Exploration of common pathogenesis and candidate hub genes between HIV and monkeypox co-infection using bioinformatics and machine learning. Sci Rep 2024; 14:26701. [PMID: 39496786 PMCID: PMC11535269 DOI: 10.1038/s41598-024-78540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/31/2024] [Indexed: 11/06/2024] Open
Abstract
This study explored the pathogenesis of human immunodeficiency virus (HIV) and monkeypox co-infection, identifying candidate hub genes and potential drugs using bioinformatics and machine learning. Datasets for HIV (GSE 37250) and monkeypox (GSE 24125) were obtained from the GEO database. Common differentially expressed genes (DEGs) in co-infection were identified by intersecting DEGs from monkeypox datasets with genes from key HIV modules screened using Weighted Gene Co-Expression Network Analysis (WGCNA). After gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and construction of protein-protein interaction (PPI) network, candidate hub genes were further screened based on machine learning algorithms. Transcriptional factors (TFs) and miRNA-candidate hub gene networks were constructed to understand regulatory mechanisms and protein-drug interactions to identify potential therapeutic drugs. Seven candidate hub genes-MX2, ADAR, POLR2H, RPL5, IFI16, IFIT2, and RPS5-were identified. TFs and miRNAs associated with these hub genes, playing a key role in regulating viral infection and inflammation due to the activation of antiviral innate immunity, were also identified through network analysis. Potential therapeutic drugs were screened based on these hub genes: AZT, a nucleotide reverse transcriptase inhibitor, suppressed viral replication in HIV and monkeypox co-infection, while mefloquine inhibited inflammation due to the activation of antiviral innate immunity. In conclusion, the study identified candidate hub genes, their transcriptional regulation, signaling pathways, and small-molecule drugs in HIV and monkeypox co-infection, contributing to understanding the pathogenesis of HIV and monkeypox co-infection and informing precise therapeutic strategies.
Collapse
Affiliation(s)
- Jialu Li
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yiwei Hao
- Division of Medical Record and Statistics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liang Wu
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Hongyuan Liang
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Liang Ni
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Fang Wang
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Sa Wang
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yujiao Duan
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Qiuhua Xu
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Jinjing Xiao
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Di Yang
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Guiju Gao
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yi Ding
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Chengyu Gao
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Jiang Xiao
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Hongxin Zhao
- Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
9
|
Ali Y, Khan AA, Alanazi AM, Abdikakharovich SA, Shah JA, Ren ZG, Khattak S. Identification of the myxobacterial secondary metabolites Aurachin A and Soraphinol A as promising inhibitors of thymidylate kinase of the Monkeypox virus. Mol Divers 2024; 28:3349-3362. [PMID: 38183513 DOI: 10.1007/s11030-023-10764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 01/08/2024]
Abstract
Thymidylate kinase (TMPK) of monkeypox virus (MPXV) has emerged as a promising target for potential therapeutics due to its significant role in pyrimidine metabolism. While smallpox drugs are advised for treating monkeypox, the European Medicine Agency has sanctioned Tecovirimat due to its potent nanomolar activity. Nonetheless, there is a need for monkeypox-specific therapeutic options. In this work, we employed docking-based virtual screening and molecular dynamics (MD) simulations to identify myxobacterial secondary metabolites as promising anti-viral natural compounds capable of inhibiting thymidylate kinase. The computational pharmacokinetics and manual curation of top-scoring compounds identified six lead compounds that were compared in terms of protein-ligand contacts and protein-essential dynamics. The study shows that among the six candidates, Aurachin A and the Soraphinol analogues such as Soraphinol A and Soraphinol C remain very stable compared to other compounds, enabling the active site integrity via a stable dynamics pattern. We also show that other compounds such as Phenoxan, Phenylnannolone C, and 8E-Aurafuron B remain unstable and have a negative impact on the active site integrity and may not be suitable binders for TMPK protein. Analyzing the Aurachin A and Soraphinol A binding, the established hydrogen bonds with Arg93 and the conserved hydrophobic interaction with Tyr101 are consistent with previous experimental interactions. Additionally, a deeper insight into the indole and the aromatic ring interaction through π-π stacking and π-cation interactions, as well as the background of Aurachin A and Soraphinol A as a bioactive compound, has significant implications not only for its potential as a promising drug but also for directing future drug discovery efforts targeting the TMPK protein.
Collapse
Affiliation(s)
- Yasir Ali
- Institute of Chemistry, Slovak Academy of Sciences, 845 38, Bratislava, Slovakia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | | | - Junaid Ali Shah
- Ferghana Medical Institute of Public Health, 104100, Ferghana, Uzbekistan
| | - Zhi-Guang Ren
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| | - Saadullah Khattak
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
10
|
Ajmal A, Shahab M, Waqas M, Zheng G, Zulfat M, Bin Jardan YA, Wondmie GF, Bourhia M, Ali I. In silico design of peptide inhibitors for Dengue virus to treat Dengue virus-associated infections. Sci Rep 2024; 14:13130. [PMID: 38849372 PMCID: PMC11161489 DOI: 10.1038/s41598-024-63064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Dengue virus is a single positive-strand RNA virus that is composed of three structural proteins including capsid, envelope, and precursor membrane while seven non-structural proteins (NS1, NS2A, NS2B, NS3A, NS3B, NS4, and NS5). Dengue is a viral infection caused by the dengue virus (DENV). DENV infections are asymptomatic or produce only mild illness. However, DENV can occasionally cause more severe cases and even death. There is no specific treatment for dengue virus infections. Therapeutic peptides have several important advantages over proteins or antibodies: they are small in size, easy to synthesize, and have the ability to penetrate the cell membranes. They also have high activity, specificity, affinity, and less toxicity. Based on the known peptide inhibitor, the current study designs peptide inhibitors for dengue virus envelope protein using an alanine and residue scanning technique. By replacing I21 with Q21, L14 with H14, and V28 with K28, the binding affinity of the peptide inhibitors was increased. The newly designed peptide inhibitors with single residue mutation improved the binding affinity of the peptide inhibitors. The inhibitory capability of the new promising peptide inhibitors was further confirmed by the utilization of MD simulation and free binding energy calculations. The molecular dynamics simulation demonstrated that the newly engineered peptide inhibitors exhibited greater stability compared to the wild-type peptide inhibitors. According to the binding free energies MM(GB)SA of these developed peptides, the first peptide inhibitor was the most effective against the dengue virus envelope protein. All peptide derivatives had higher binding affinities for the envelope protein and have the potential to treat dengue virus-associated infections. In this study, new peptide inhibitors were developed for the dengue virus envelope protein based on the already reported peptide inhibitor.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Shahab
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, 616, Nizwa, Oman
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Maryam Zulfat
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | | | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|
11
|
Ajmal A, Danial M, Zulfat M, Numan M, Zakir S, Hayat C, Alabbosh KF, Zaki MEA, Ali A, Wei D. In Silico Prediction of New Inhibitors for Kirsten Rat Sarcoma G12D Cancer Drug Target Using Machine Learning-Based Virtual Screening, Molecular Docking, and Molecular Dynamic Simulation Approaches. Pharmaceuticals (Basel) 2024; 17:551. [PMID: 38794122 PMCID: PMC11124053 DOI: 10.3390/ph17050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/26/2024] Open
Abstract
Single-point mutations in the Kirsten rat sarcoma (KRAS) viral proto-oncogene are the most common cause of human cancer. In humans, oncogenic KRAS mutations are responsible for about 30% of lung, pancreatic, and colon cancers. One of the predominant mutant KRAS G12D variants is responsible for pancreatic cancer and is an attractive drug target. At the time of writing, no Food and Drug Administration (FDA) approved drugs are available for the KRAS G12D mutant. So, there is a need to develop an effective drug for KRAS G12D. The process of finding new drugs is expensive and time-consuming. On the other hand, in silico drug designing methodologies are cost-effective and less time-consuming. Herein, we employed machine learning algorithms such as K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF) for the identification of new inhibitors against the KRAS G12D mutant. A total of 82 hits were predicted as active against the KRAS G12D mutant. The active hits were docked into the active site of the KRAS G12D mutant. Furthermore, to evaluate the stability of the compounds with a good docking score, the top two complexes and the standard complex (MRTX-1133) were subjected to 200 ns MD simulation. The top two hits revealed high stability as compared to the standard compound. The binding energy of the top two hits was good as compared to the standard compound. Our identified hits have the potential to inhibit the KRAS G12D mutation and can help combat cancer. To the best of our knowledge, this is the first study in which machine-learning-based virtual screening, molecular docking, and molecular dynamics simulation were carried out for the identification of new promising inhibitors for the KRAS G12D mutant.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Danial
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Maryam Zulfat
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Numan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Sidra Zakir
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Chandni Hayat
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Arif Ali
- Department of Bioinformatics and Biological Statistics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongqing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
- Henan Biological Industry Group, 41 Nongye East Rd., Jinshui, Zhengzhou 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
12
|
Hayat C, Subramaniyan V, Alamri MA, Wong LS, Khalid A, Abdalla AN, Afridi SG, Kumarasamy V, Wadood A. Identification of new potent NLRP3 inhibitors by multi-level in-silico approaches. BMC Chem 2024; 18:76. [PMID: 38637900 PMCID: PMC11027297 DOI: 10.1186/s13065-024-01178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.
Collapse
Affiliation(s)
- Chandni Hayat
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Mardan, 23200, Pakistan
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, 45142, Jazan, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Mardan, 23200, Pakistan
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
13
|
Alotaibi BS. In silico identification of phytochemical inhibitors for multidrug-resistant tuberculosis based on novel pharmacophore generation and molecular dynamics simulation studies. BMC Chem 2024; 18:77. [PMID: 38637835 PMCID: PMC11027422 DOI: 10.1186/s13065-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Multidrug-resistant tuberculosis (particularly resistant to pyrazinoic acid) is a life-threatening chronic pulmonary disease. Running a marketed regime specifically targets the ribosomal protein subunit-1 (RpsA) and stops trans-translation in the non-mutant bacterium, responsible for the lysis of bacterial cells. However, in the strains of mutant bacteria, this regime has failed in curing TB and killing pathogens, which may only because of the ala438 deletion, which inhibit the binding of pyrazinoic acid to the RpsA active site. Therefore, such cases of tuberculosis need an immediate and effective regime. OBJECTIVE This study has tried to determine and design such chemotypes that are able to bind to the mutant RpsA protein. METHODS For these purposes, two phytochemical databases, i.e., NPASS and SANCDB, were virtually screened by a pharmacophore model using an online virtual screening server Pharmit. RESULTS The model of pharmacophore was developed using the potential inhibitor (zr115) for the mutant of RpsA. Pharmacophore-based virtual screening results into 154 hits from the NPASS database, and 22 hits from the SANCDB database. All the predicted hits were docked in the binding pocket of the mutant RpsA protein. Top-ranked five and two compounds were selected from the NPASS and SANCDB databases respectively. On the basis of binding energies and binding affinities of the compounds, three compounds were selected from the NPASS database and one from the SANCDB database. All compounds were found to be non-toxic and highly active against the mutant pathogen. To further validate the docking results and check the stability of hits, molecular dynamic simulation of three compounds were performed. The MD simulation results showed that all these finally selected compounds have stronger binding interactions, lesser deviation or fluctuations, with greater compactness compared to the reference compound. CONCLUSION These findings indicate that these compounds could be effective inhibitors for mutant RpsA.
Collapse
Affiliation(s)
- Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al- Quwayiyah, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Shen C, Yin J, Wang M, Yu Z, Xu X, Zhou Z, Hu Y, Xia C, Hu G. Mutations influence the conformational dynamics of the GDP/KRAS complex. J Biomol Struct Dyn 2024:1-14. [PMID: 38529923 DOI: 10.1080/07391102.2024.2331627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Mutations near allosteric sites can have a significant impact on the function of KRAS. Three specific mutations, K104Q, G12D/K104Q, and G12D/G75A, which are located near allosteric positions, were selected to investigate the molecular mechanisms behind mutation-induced influences on the activity of KRAS. Gaussian accelerated molecular dynamics (GaMD) simulations followed by the principal component analysis (PCA) were performed to improve the sampling of conformational states. The results revealed that these mutations significantly alter the structural flexibility, correlated motions, and dynamic behavior of the switch regions that are essential for KRAS binding to effectors or regulators. Furthermore, the mutations have a significant impact on the hydrogen bonding interactions between GDP and the switch regions, as well as on the electrostatic interactions of magnesium ions (Mg2+) with these regions. Our results verified that these mutations strongly influence the binding of KRAS to its effectors or regulators and allosterically regulate the activity. We believe that this work can provide valuable theoretical insights into a deeper understanding of KRAS function.
Collapse
Affiliation(s)
- Congcong Shen
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Jie Yin
- Qingyun People's Hospital, Dezhou, China
| | - Min Wang
- Qingyun People's Hospital, Dezhou, China
| | - Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Xin Xu
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Zhongshun Zhou
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Yingshi Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Caijuan Xia
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| |
Collapse
|
15
|
Muhammad N, Khan R, Seraj F, Khan A, Ullah U, Wadood A, Ajmal A, Uzma, Ali B, Khan KM, Ain Nawaz NU, AlMasoud N, Alomar TS, Rauf A. In vivo analgesic, anti-inflammatory and molecular docking studies of S-naproxen derivatives. Heliyon 2024; 10:e24267. [PMID: 38304837 PMCID: PMC10831619 DOI: 10.1016/j.heliyon.2024.e24267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
In the current studies two naproxen derivatives (NPD) were evaluated for analgesic and anti-inflammatory properties. The acetic acid and hot plate animal models were used to screen the compounds for analgesic potential. While the anti-inflammatory potential was evaluated through animal paw edema, induced by several inflammatory mediators (carrageenan, bradykinin, and prostaglandin E2), the xylene-induced ear edema was also used as an inflammatory model. Both NPDs showed significant (p < 0.001) antinociceptive effects in the acetic acid-induced writhing paradigm. In the case of the hot plate, the NPD 1 at the tested dose of 5 mg/kg enhanced the latency time after 60 min of injection, which remained significant (p < 0.001) up to the end of the experiment duration. The maximum percent inhibition of NPD 1 was 87.53. The naloxone injection significantly lowered the latency time of NPD 1 as compared to NPD 2. Regarding the anti-inflammatory effect, both of the tested NPDs demonstrated a significant reduction in paw edema against various inflammatory mediators, as mentioned above; however, the anti-inflammatory effect of NPD 1 was better. The maximal percent inhibition by NPD 1 and 2 was 43.24 (after 60 min) and 45.93 (after 90 min). A considerable effect also resulted from xylene-induced ere edema. Further, a molecular docking study was carried out to investigate the binding modes of the NPD. The docking analysis revealed that the NPD significantly interacted with the COX2 enzyme. Furthermore, molecular dynamics simulation was carried out for the docked complexes. The MD simulation analysis revealed the high stability of the two naproxen derivatives.
Collapse
Affiliation(s)
- Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakhtunkhwa, Pakistan
| | - Rashid Khan
- Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Faiza Seraj
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Abad Khan
- Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ubaid Ullah
- Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakhtunkhwa, Pakistan
| | - Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakhtunkhwa, Pakistan
| | - Uzma
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakhtunkhwa, Pakistan
| | - Basharat Ali
- Sulaiman Bin Abdullah Aba Al-Khail (SA)- Center for Interdisciplinary Research in Basic Science, International Islamic University, Islamabad, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Pakistan Academy of Science, 3-Constitution Avenue, G-5/2, Islamabad, 44000, Pakistan
| | - Noor Ul Ain Nawaz
- Department of Pharmacy, City University of Science and Information Technology Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh, 11671, Saudi Arabia
| | - Taghrid S. Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh, 11671, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, 23430, Pakistan
| |
Collapse
|
16
|
Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, Yin L, Yang Y, Tan W, Shen L. Mpox (formerly monkeypox): pathogenesis, prevention, and treatment. Signal Transduct Target Ther 2023; 8:458. [PMID: 38148355 PMCID: PMC10751291 DOI: 10.1038/s41392-023-01675-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/28/2023] Open
Abstract
In 2022, a global outbreak of Mpox (formerly monkeypox) occurred in various countries across Europe and America and rapidly spread to more than 100 countries and regions. The World Health Organization declared the outbreak to be a public health emergency of international concern due to the rapid spread of the Mpox virus. Consequently, nations intensified their efforts to explore treatment strategies aimed at combating the infection and its dissemination. Nevertheless, the available therapeutic options for Mpox virus infection remain limited. So far, only a few numbers of antiviral compounds have been approved by regulatory authorities. Given the high mutability of the Mpox virus, certain mutant strains have shown resistance to existing pharmaceutical interventions. This highlights the urgent need to develop novel antiviral drugs that can combat both drug resistance and the potential threat of bioterrorism. Currently, there is a lack of comprehensive literature on the pathophysiology and treatment of Mpox. To address this issue, we conducted a review covering the physiological and pathological processes of Mpox infection, summarizing the latest progress of anti-Mpox drugs. Our analysis encompasses approved drugs currently employed in clinical settings, as well as newly identified small-molecule compounds and antibody drugs displaying potential antiviral efficacy against Mpox. Furthermore, we have gained valuable insights from the process of Mpox drug development, including strategies for repurposing drugs, the discovery of drug targets driven by artificial intelligence, and preclinical drug development. The purpose of this review is to provide readers with a comprehensive overview of the current knowledge on Mpox.
Collapse
Affiliation(s)
- Junjie Lu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Hui Xing
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Chunhua Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Mengjun Tang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Fan Ye
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Lijuan Yin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China.
| |
Collapse
|
17
|
Rafiq H, Hu J, Hakami MA, Hazazi A, Alamri MA, Alkhatabi HA, Mahmood A, Alotaibi BS, Wadood A, Huang X. Identification of novel STAT3 inhibitors for liver fibrosis, using pharmacophore-based virtual screening, molecular docking, and biomolecular dynamics simulations. Sci Rep 2023; 13:20147. [PMID: 37978263 PMCID: PMC10656421 DOI: 10.1038/s41598-023-46193-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) plays a fundamental role in the growth and regulation of cellular life. Activation and over-expression of STAT3 have been implicated in many cancers including solid blood tumors and other diseases such as liver fibrosis and rheumatoid arthritis. Therefore, STAT3 inhibitors are be coming a growing and interesting area of pharmacological research. Consequently, the aim of this study is to design novel inhibitors of STAT3-SH3 computationally for the reduction of liver fibrosis. Herein, we performed Pharmacophore-based virtual screening of databases including more than 19,481 commercially available compounds and in-house compounds. The hits obtained from virtual screening were further docked with the STAT3 receptor. The hits were further ranked on the basis of docking score and binding interaction with the active site of STAT3. ADMET properties of the screened compounds were calculated and filtered based on drug-likeness criteria. Finally, the top five drug-like hit compounds were selected and subjected to molecular dynamic simulation. The stability of each drug-like hit in complex with STAT3 was determined by computing their RMSD, RMSF, Rg, and DCCM analyses. Among all the compounds Sa32 revealed a good docking score, interactions, and stability during the entire simulation procedure. As compared to the Reference compound, the drug-like hit compound Sa32 showed good docking scores, interaction, stability, and binding energy. Therefore, we identified Sa32 as the best small molecule potent inhibitor for STAT3 that will be helpful in the future for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Huma Rafiq
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Junjian Hu
- Department of Central Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan, China
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Hind A Alkhatabi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Arif Mahmood
- Center for Medical Genetics and Human Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan.
| | - Xiaoyun Huang
- Department of Neurology, Dongguan Songshan Lake Central Hospital, Dongguan, China.
| |
Collapse
|
18
|
Hussein D, Saka M, Baeesa S, Bangash M, Alghamdi F, Al Zughaibi T, AlAjmi MF, Haque S, Rehman MT. Structure-based virtual screening and molecular docking approaches to identify potential inhibitors against KIF2C to combat glioma. J Biomol Struct Dyn 2023; 42:13816-13829. [PMID: 37942622 DOI: 10.1080/07391102.2023.2278750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Glioma, a kind of malignant brain tumor, is extremely lethal. Kinesin family member 2C (KIF2C) was found to have an aberrant expression in several cancer types, including lung cancer and glioma. KIF2C may therefore be a useful therapeutic target for the treatment of glioma. In the current study, new drug candidates that may function as KIF2C enzyme inhibitors were discovered. MTi OpenScreen was used to carry out the structure-based virtual screening of an inbuilt drug library containing 150,000 compounds. These compounds belong to different classes, such as natural product-based compounds (NP-lib), purchasable approved drugs (Drugs-lib), and food constituents compound collection (FOOD-lib). Based on their binding affinities, a total of 84 compounds were further pushed to calculate ADMET properties. The compounds (16) meeting the ADMET cutoff ranges were then further docked to the receptor to find their plausible binding modes using the Glide tool's standard precision (SP) technique. The docking results were examined using the Glide gscore, and the best binding compounds (Rimacalib and Sarizotan) were chosen to test their stability with KIF2C protein through molecular dynamics (MD) simulation. Similarly, Principal Component Analysis and cross-correlation matrix were also examined. The MM/GBSA binding free energies showed a considerable energy contribution in the binding of hits with the KIF2C. Collectively, these findings strongly suggest the potential of the lead compounds to inhibit the biological function of KIF2C, emphasizing the need for further investigation in this area.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deema Hussein
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamad Saka
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki Al Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|