1
|
Silva ML, Osório NS, Saraiva M. Immunoinformatics Predictions on Variable Mycobacterium tuberculosis Lineage 6 T Cell Epitopes and HLA Interactions in West Africa. Microorganisms 2025; 13:1032. [PMID: 40431205 PMCID: PMC12114075 DOI: 10.3390/microorganisms13051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a global health challenge. The human-adapted TB-causing bacteria are distributed into ten lineages with distinct global distributions and clinical outcomes. Mtb lineages 4 (L4) and L6 are good prototypes of these differences, because L4 is globally prevalent, whereas L6 is geographically restricted to West Africa and associated with slower disease progression. Given the fundamental role of T cells for the control of TB, we questioned whether Mtb L4 or L6 antigens and HLA interactions would be disrupted in West African hosts. Here, we selected variable and validated antigens and demonstrate their expression during in vivo Mtb L4 or L6 infections. We then compared the predicted number of IFN-γ-inducing and HLA high-binding-affinity peptides in Mtb ancestral, L4, or L6 proteins, considering HLA alleles of high or low frequency in West Africa. Our immunoinformatics approach predicts that non-synonymous substitutions of high variance in Mtb L6 strains diminish binding affinities to HLA alleles prevalent in West African populations, suggesting specific adaptations of these strains to their preferred hosts. Future functional studies will advance our knowledge on lineage-specific evolution and inform strategies to enhance TB control in endemic regions.
Collapse
Affiliation(s)
- Marta L. Silva
- i3S—Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal;
- Doctoral Program in Molecular and Cellular Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Nuno S. Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Margarida Saraiva
- i3S—Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal;
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Arbués A, Schmidiger S, Reinhard M, Borrell S, Gagneux S, Portevin D. Soluble immune mediators orchestrate protective in vitro granulomatous responses across Mycobacterium tuberculosis complex lineages. eLife 2025; 13:RP99062. [PMID: 40162896 PMCID: PMC11957536 DOI: 10.7554/elife.99062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets-a phenotype associated with dormancy-that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.
Collapse
Affiliation(s)
- Ainhoa Arbués
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sarah Schmidiger
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Damien Portevin
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
3
|
Goig GA, Windels EM, Loiseau C, Stritt C, Biru L, Borrell S, Brites D, Gagneux S. Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex. Nat Rev Microbiol 2025:10.1038/s41579-025-01159-w. [PMID: 40133503 DOI: 10.1038/s41579-025-01159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/27/2025]
Abstract
With the COVID-19 pandemic receding, tuberculosis (TB) is again the number one cause of human death to a single infectious agent. TB is caused by bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Recent advances in genome sequencing have provided new insights into the ecology and evolution of the MTBC. This includes the discovery of new phylogenetic lineages within the MTBC, a deeper understanding of the host tropism among the various animal-adapted lineages, enhanced knowledge on the evolutionary dynamics of antimicrobial resistance and transmission, as well as a better grasp of the within-host MTBC diversity. Moreover, advances in long-read sequencing are increasingly highlighting the relevance of structural genomic variation in the MTBC. These findings not only shed new light on the biology and epidemiology of TB, but also give rise to new questions and research avenues. The purpose of this Review is to summarize these new insights and discuss their implications for global TB control.
Collapse
Affiliation(s)
- Galo A Goig
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Etthel M Windels
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Chloé Loiseau
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Stritt
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Loza Biru
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Otchere ID, Asante-Poku A, Akpadja KF, Diallo AB, Sanou A, Asare P, Osei-Wusu S, Onyejepu N, Diarra B, Dagnra YA, Kehinde A, Antonio M, Yeboah-Manu D. Opinion review of drug resistant tuberculosis in West Africa: tackling the challenges for effective control. Front Public Health 2024; 12:1374703. [PMID: 38827613 PMCID: PMC11141065 DOI: 10.3389/fpubh.2024.1374703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Drug-resistant (DR) tuberculosis (TB) is a major public health concern globally, complicating TB control and management efforts. West Africa has historically faced difficulty in combating DR-TB due to limited diagnostic skills, insufficient access to excellent healthcare, and ineffective healthcare systems. This has aided in the emergence and dissemination of DR Mycobacterium tuberculosis complex (MTBC) strains in the region. In the past, DR-TB patients faced insufficient resources, fragmented efforts, and suboptimal treatment outcomes. However, current efforts to combat DR-TB in the region are promising. These efforts include strengthening diagnostic capacities, improving access to quality healthcare services, and implementing evidence-based treatment regimens for DR-TB. Additionally, many West African National TB control programs are collaborating with international partners to scale up laboratory infrastructure, enhance surveillance systems, and promote infection control measures. Moreso, novel TB drugs and regimens, such as bedaquiline and delamanid, are being introduced to improve treatment outcomes for DR-TB cases. Despite these obstacles, there is optimism for the future of DR-TB control in West Africa. Investments are being made to improve healthcare systems, expand laboratory capacity, and support TB research and innovation. West African institutions are now supporting knowledge sharing, capacity building, and resource mobilization through collaborative initiatives such as the West African Network for TB, AIDS, and Malaria (WANETAM), the West African Health Organization (WAHO), and other regional or global partners. These efforts hold promise for improved diagnostics, optimized treatment regimens, and provide better patient outcomes in the future where drug-resistant TB in WA can be effectively controlled, reducing the burden of the disease, and improving the health outcomes of affected individuals.
Collapse
Affiliation(s)
- Isaac Darko Otchere
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Adwoa Asante-Poku
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Awa Ba Diallo
- Biological Sciences Department, Faculty of Pharmacy at Cheikh Anta Diop University, Dakar, Senegal
| | - Adama Sanou
- Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Prince Asare
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nneka Onyejepu
- Microbiology Department, Center for Tuberculosis Research Laboratory, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Bassirou Diarra
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Aderemi Kehinde
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Epidemic Preparedness and Response, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
5
|
Hiza H, Zwyer M, Hella J, Arbués A, Sasamalo M, Borrell S, Xu ZM, Ross A, Brites D, Fellay J, Reither K, Gagneux S, Portevin D. Bacterial diversity dominates variable macrophage responses of tuberculosis patients in Tanzania. Sci Rep 2024; 14:9287. [PMID: 38653771 DOI: 10.1038/s41598-024-60001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) comprises nine human-adapted lineages that differ in their geographical distribution. Local adaptation of specific MTBC genotypes to the respective human host population has been invoked in this context. We aimed to assess if bacterial genetics governs MTBC pathogenesis or if local co-adaptation translates into differential susceptibility of human macrophages to infection by different MTBC genotypes. We generated macrophages from cryopreserved blood mononuclear cells of Tanzanian tuberculosis patients, from which the infecting MTBC strains had previously been phylogenetically characterized. We infected these macrophages ex vivo with a phylogenetically similar MTBC strain ("matched infection") or with strains representative of other MTBC lineages ("mismatched infection"). We found that L1 infections resulted in a significantly lower bacterial burden and that the intra-cellular replication rate of L2 strains was significantly higher compared the other MTBC lineages, irrespective of the MTBC lineage originally infecting the patients. Moreover, L4-infected macrophages released significantly greater amounts of TNF-α, IL-6, IL-10, MIP-1β, and IL-1β compared to macrophages infected by all other strains. While our results revealed no measurable effect of local adaptation, they further highlight the strong impact of MTBC phylogenetic diversity on the variable outcome of the host-pathogen interaction in human tuberculosis.
Collapse
Affiliation(s)
- Hellen Hiza
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Michaela Zwyer
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jerry Hella
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ainhoa Arbués
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mohamed Sasamalo
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Zhi Ming Xu
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sébastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|