1
|
Jungpraditphol I, Sutthiboonyapan P, Khamwachirapitak C, Krasaesin A, Srithanyarat S, Porntaveetus T, Wiriyakijja P. Shotgun Metagenomics of Biofilm Microbiome in Oral Lichen Planus With Desquamative Gingivitis. Oral Dis 2025. [PMID: 40275546 DOI: 10.1111/odi.15349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
INTRODUCTION Oral lichen planus (OLP) is a chronic inflammatory condition often associated with desquamative gingivitis (DG). The oral microbiome's role in OLP and DG (OLP-DG) is gaining recognition, but prior 16S rRNA studies lacked taxonomic resolution. This study introduced shotgun metagenomic sequencing to thoroughly compare the supragingival and subgingival plaque microbiomes of individuals with and without OLP-DG. METHODS Twenty-seven participants (9 OLP-DG, 18 non-OLP) were recruited. Supra- and subgingival plaque samples were collected separately. Genomic DNA was analyzed using shotgun metagenomic sequencing. Microbial abundance and diversity were assessed through bioinformatic and statistical analyses. RESULTS We observed significant changes in the supragingival and subgingival microbiomes in OLP-DG. Supragingival plaque showed reduced Corynebacteriaceae and Porphyromonadaceae, with enrichment of an unnamed Synergistaceae genus and three unnamed species (Candidatus Saccharibacteria bacterium oral taxon 955 and 488 and GGB10852_SGB17523). Subgingival plaque revealed increased Flavobacteriaceae and Rhodocyclaceae, and reduced Actinomycetaceae. Although alpha or beta diversity was not significantly different, common commensals like Corynebacterium matruchotii and Streptococcus mitis were less abundant in OLP-DG patients. CONCLUSION This first-time application of metagenomic sequencing revealed a distinct microbiome in OLP-DG, characterized by novel bacterial species and reduced commensals, suggesting a potential role in OLP-DG pathogenesis, and warranting further study.
Collapse
Affiliation(s)
- Isdee Jungpraditphol
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Pimchanok Sutthiboonyapan
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Precision Medicine and Digital Health, Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chompak Khamwachirapitak
- Center of Excellence in Precision Medicine and Digital Health, Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Annop Krasaesin
- Center of Excellence in Precision Medicine and Digital Health, Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Supreda Srithanyarat
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Precision Medicine and Digital Health, Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Precision Medicine and Digital Health, Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Physiology, Geriatric Patients and Special Patients Care International Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Paswach Wiriyakijja
- Center of Excellence in Precision Medicine and Digital Health, Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Oral Medicine, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Grossman AS, Lei L, Botting JM, Liu J, Nahar N, Souza JGS, Liu J, McLean JS, He X, Bor B. Saccharibacteria deploy two distinct Type IV pili, driving episymbiosis, host competition, and twitching motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624915. [PMID: 39651235 PMCID: PMC11623550 DOI: 10.1101/2024.11.25.624915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
All cultivated Patescibacteria, or CPR, exist as obligate episymbionts on other microbes. Despite being ubiquitous in mammals and environmentally, molecular mechanisms of host identification and binding amongst ultrasmall bacterial episymbionts are largely unknown. Type 4 pili (T4P) are well conserved in this group and predicted to facilitate symbiotic interactions. To test this, we targeted T4P pilin genes in Saccharibacteria Nanosynbacter lyticus strain TM7x to assess their essentiality and roles in symbiosis. Our results revealed that N. lyticus assembles two distinct T4P, a non-essential thin pili that has the smallest diameter of any T4P and contributes to host-binding, episymbiont growth, and competitive fitness relative to other Saccharibacteria, and an essential thick pili whose functions include twitching motility. Identification of lectin-like minor pilins and modification of host cell walls suggest glycan binding mechanisms. Collectively our findings demonstrate that Saccharibacteria encode unique extracellular pili that are vital mediators of their underexplored episymbiotic lifestyle.
Collapse
Affiliation(s)
- Alex S Grossman
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Lei Lei
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610093, China
| | - Jack M Botting
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jett Liu
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Nusrat Nahar
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - João Gabriel S Souza
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, Guarulhos, São Paulo 07023-070, Brazil
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jeffrey S McLean
- Department of Microbiology, University of Washington, Seattle WA, 98109, USA
- Department of Periodontics, University of Washington, Seattle WA, 98195, USA
- Department of Oral Health Sciences, University of Washington, Seattle WA, 98195, USA
| | - Xuesong He
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Batbileg Bor
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| |
Collapse
|
3
|
Łasica A, Golec P, Laskus A, Zalewska M, Gędaj M, Popowska M. Periodontitis: etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies. Front Microbiol 2024; 15:1469414. [PMID: 39391608 PMCID: PMC11464445 DOI: 10.3389/fmicb.2024.1469414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Inflammatory periodontal diseases associated with the accumulation of dental biofilm, such as gingivitis and periodontitis, are very common and pose clinical problems for clinicians and patients. Gingivitis is a mild form of gum disease and when treated quickly and properly is completely reversible. Periodontitis is an advanced and irreversible disease of the periodontium with periods of exacerbations, progressions and remission. Periodontitis is a chronic inflammatory condition that damages the tissues supporting the tooth in its socket, i.e., the gums, periodontal ligaments, root cementum and bone. Periodontal inflammation is most commonly triggered by bacteria present in excessive accumulations of dental plaque (biofilm) on tooth surfaces. This disease is driven by disproportionate host inflammatory immune responses induced by imbalance in the composition of oral bacteria and changes in their metabolic activities. This microbial dysbiosis favors the establishment of inflammatory conditions and ultimately results in the destruction of tooth-supporting tissues. Apart microbial shift and host inflammatory response, environmental factors and genetics are also important in etiology In addition to oral tissues destruction, periodontal diseases can also result in significant systemic complications. Conventional methods of periodontal disease treatment (improving oral hygiene, dental biofilm control, mechanical plaque removal, using local or systemic antimicrobial agents) are not fully effective. All this prompts the search for new methods of therapy. Advanced periodontitis with multiple abscesses is often treated with antibiotics, such as amoxicillin, tetracycline, doxycycline, minocycline, clindamycin, or combined therapy of amoxicillin with metronidazole. However, due to the growing problem of antibiotic resistance, treatment does not always achieve the desired therapeutic effect. This review summarizes pathogenesis, current approaches in treatment, limitations of therapy and the current state of research on the possibility of application of bacteriophages and predatory bacteria to combat bacteria responsible for periodontitis. We present the current landscape of potential applications for alternative therapies for periodontitis based on phages and bacteria, and highlight the gaps in existing knowledge that need to be addressed before clinical trials utilizing these therapeutic strategies can be seriously considered.
Collapse
Affiliation(s)
- Anna Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Gędaj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Podar NA, Carrell AA, Cassidy KA, Klingeman DM, Yang Z, Stahler EA, Smith DW, Stahler DR, Podar M. From wolves to humans: oral microbiome resistance to transfer across mammalian hosts. mBio 2024; 15:e0334223. [PMID: 38299854 PMCID: PMC10936156 DOI: 10.1128/mbio.03342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.
Collapse
Affiliation(s)
- Nicholas A. Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kira A. Cassidy
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Dawn M. Klingeman
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zamin Yang
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Erin A. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Douglas W. Smith
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Daniel R. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Mircea Podar
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|