1
|
Marques ARA, Ferreira IS, Ribeiro Q, Ferraz MJ, Lopes E, Pinto D, Hall M, Ramalho J, Artola M, Almeida MS, Rodrigues G, Gonçalves PA, Ferreira J, Borbinha C, Marto JP, Viana-Baptista M, Gouveia E Melo R, Pedro LM, Soares MIL, Vaz WLC, Vieira OV, Aerts JMFG. Glucosylated cholesterol accumulates in atherosclerotic lesions and impacts macrophage immune response. J Lipid Res 2025:100825. [PMID: 40381699 DOI: 10.1016/j.jlr.2025.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025] Open
Abstract
Atherosclerosis can be described as a local acquired lysosomal storage disorder (LSD), resulting from the build-up of undegraded material in lysosomes. Atherosclerotic foam cells accumulate cholesterol (Chol) and glycosphingolipids (GSLs) within lysosomes. This constitutes the ideal milieu for the formation of a side product of lysosomal storage: glucosylated cholesterol (GlcChol), previously found in several LSDs. Using LC-MS/MS, we demonstrated that GlcChol is abundant in atherosclerotic lesions. Patients suffering from cardiovascular diseases presented unaltered plasma GlcChol levels but slightly elevated GlcChol/Chol ratios. Furthermore, we mimicked GlcChol formation in vitro by exposing macrophages (Mφ) to a pro-atherogenic oxidized cholesteryl ester, an atherosclerosis foam cell model. Additionally, Mφ exposed to GlcChol exhibited an enlarged and multinucleated phenotype. These Mφ present signs of decreased proliferation and reduced pro-inflammatory capacity. Mechanistically the process seems to be associated with the activation of the AMPK signalling pathway and the cyclin-dependent kinase inhibitor 1 (CDKN1A/p21), in response to DNA damage inflicted by reactive oxygen species (ROS). At the organelle level, exposure to GlcChol impacted the lysosomal compartment, resulting in the activation of the mTOR signalling pathway and lysosomal biogenesis mediated by the transcription factor EB (TFEB). This suggests that high concentrations of GlcChol impact cellular homeostasis. In contrast, under this threshold GlcChol formation most likely represents a relatively innocuous compensatory mechanism to cope with Chol and GSL build-up within lesions. Our findings demonstrate that glycosidase-mediated lipid modifications may play a role in the aetiology of genetic and acquired LSDs, warranting further investigation.
Collapse
Affiliation(s)
- André R A Marques
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal.
| | - Inês S Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Quélia Ribeiro
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria J Ferraz
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Elizeth Lopes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Daniela Pinto
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Michael Hall
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Manuel S Almeida
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Gustavo Rodrigues
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Pedro Araújo Gonçalves
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Jorge Ferreira
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Cláudia Borbinha
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - João Pedro Marto
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - Miguel Viana-Baptista
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - Ryan Gouveia E Melo
- Department of Vascular Surgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Luís Mendes Pedro
- Department of Vascular Surgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Maria I L Soares
- University of Coimbra, Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Winchil L C Vaz
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Otília V Vieira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
2
|
Khizar H, Ali K, Wang J. From silent partners to potential therapeutic targets: macrophages in colorectal cancer. Cancer Immunol Immunother 2025; 74:121. [PMID: 39998578 PMCID: PMC11861851 DOI: 10.1007/s00262-025-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Cancer cells grow and survive in the tumor microenvironment, which is a complicated process. As a key part of how colorectal cancer (CRC) progresses, tumor-associated macrophages (TAMs) exhibit a double role. Through angiogenesis, this TAM can promote the growth of cancers. Although being able to modify and adjust immune cells is a great advantage, these cells can also exhibit anti-cancer properties including direct killing of cancer cells, presenting antigens, and aiding T cell-mediated responses. The delicate regulatory mechanisms between the immune system and tumors are composed of a complex network of pathways regulated by several factors including hypoxia, metabolic reprogramming, cytokine/chemokine signaling, and cell interactions. Decoding and figuring out these complex systems become significant in building targeted treatment programs. Targeting TAMs in CRC involves disrupting chemokine signaling or adhesion molecules, reprogramming them to an anti-tumor phenotype using TLR agonists, CD40 agonists, or metabolic modulation, and selectively removing TAM subsets that promote tumor growth. Multi-drug resistance, the absence of an accurate biomarker, and drug non-specificity are also major problems. Combining macrophage-targeted therapies with chemotherapy and immunotherapy may revolutionize treatment. Macrophage studies will advance with new technology and multi-omics methodologies to help us understand CRC and build specific and efficient treatments.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Dinda SK, Hazra S, De A, Datta A, Das L, Pattanayak S, Kumar K, Dey MD, Basu A, Manna D. Amoebae: beyond pathogens- exploring their benefits and future potential. Front Cell Infect Microbiol 2024; 14:1518925. [PMID: 39744153 PMCID: PMC11688213 DOI: 10.3389/fcimb.2024.1518925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Amoebae, fascinatingly diverse protists, showcase a dual nature that positions them as both friends and foes in our world. These organisms, defined by their distinctive pseudopodia, span a spectrum from harmful to helpful. On the darker side, species like Entamoeba histolytica pose serious health risks, causing intestinal and liver diseases, while the infamous "brain-eating" Naegleria fowleri leads to fatal primary amoebic meningoencephalitis (PAM), with a daunting 97% mortality rate. Other free-living amoebae, including Acanthamoeba castellanii and Balamuthia mandrillaris, also threaten the human central nervous system. Yet, beyond these dangers, amoebae play critical ecological roles. They function as nature's recyclers, decomposing organic material and nourishing aquatic ecosystems, while also serving as food for various organisms. Moreover, certain amoebae help control plant pathogens and offer insight into human disease, proving valuable as model organisms in biomedical research. This review sheds light on the complex, multifaceted world of amoebae, highlighting their dual role as pathogens and as key contributors to vital ecological processes, as well as their significant impact on research and their promising potential for enhancing human well-being.
Collapse
Affiliation(s)
- Suman Kalyan Dinda
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Shreyasee Hazra
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Anwesha De
- Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Annurima Datta
- Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Lipika Das
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Santanu Pattanayak
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Kishor Kumar
- Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, India
| | - Manash Deep Dey
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Arnab Basu
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Dipak Manna
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| |
Collapse
|
4
|
Krotofil M, Tota M, Siednienko J, Donizy P. Emerging Paradigms in Cancer Metastasis: Ghost Mitochondria, Vasculogenic Mimicry, and Polyploid Giant Cancer Cells. Cancers (Basel) 2024; 16:3539. [PMID: 39456632 PMCID: PMC11506636 DOI: 10.3390/cancers16203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The capacity of cancer cells to migrate from a primary tumor, disseminate throughout the body, and eventually establish secondary tumors is a fundamental aspect of metastasis. A detailed understanding of the cellular and molecular mechanisms underpinning this multifaceted process would facilitate the rational development of therapies aimed at treating metastatic disease. Although various hypotheses and models have been proposed, no single concept fully explains the mechanism of metastasis or integrates all observations and experimental findings. Recent advancements in metastasis research have refined existing theories and introduced new ones. This review evaluates several novel/emerging theories, focusing on ghost mitochondria (GM), vasculogenic mimicry (VM), and polyploid giant cancer cells (PGCCs).
Collapse
Affiliation(s)
- Mateusz Krotofil
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Maciej Tota
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Jakub Siednienko
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Department of Pathology and Clinical Cytology, Jan Mikulicz-Radecki University Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Abdelmissih S, Hosny SA, Elwi HM, Sayed WM, Eshra MA, Shaker OG, Samir NF. Chronic Caffeine Consumption, Alone or Combined with Agomelatine or Quetiapine, Reduces the Maximum EEG Peak, As Linked to Cortical Neurodegeneration, Ovarian Estrogen Receptor Alpha, and Melatonin Receptor 2. Psychopharmacology (Berl) 2024; 241:2073-2101. [PMID: 38842700 PMCID: PMC11442587 DOI: 10.1007/s00213-024-06619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
RATIONALE Evidence of the effects of chronic caffeine (CAFF)-containing beverages, alone or in combination with agomelatine (AGO) or quetiapine (QUET), on electroencephalography (EEG), which is relevant to cognition, epileptogenesis, and ovarian function, remains lacking. Estrogenic, adenosinergic, and melatonergic signaling is possibly linked to the dynamics of these substances. OBJECTIVES The brain and ovarian effects of CAFF were compared with those of AGO + CAFF and QUET + CAFF. The implications of estrogenic, adenosinergic, and melatonergic signaling and the brain-ovarian crosstalk were investigated. METHODS Adult female rats were administered AGO (10 mg/kg), QUET (10 mg/kg), CAFF, AGO + CAFF, or QUET + CAFF, once daily for 8 weeks. EEG, estrous cycle progression, and microstructure of the brain and ovaries were examined. Brain and ovarian 17β-estradiol (E2), antimullerian hormone (AMH), estrogen receptor alpha (E2Rα), adenosine receptor 2A (A2AR), and melatonin receptor 2 (MT2R) were assessed. RESULTS CAFF, alone or combined with AGO or QUET, reduced the maximum EEG peak, which was positively linked to ovarian E2Rα, negatively correlated to cortical neurodegeneration and ovarian MT2R, and associated with cystic ovaries. A large corpus luteum emerged with AGO + CAFF and QUET + CAFF, antagonizing the CAFF-mediated increased ovarian A2AR and reduced cortical E2Rα. AGO + CAFF provoked TTP delay and increased ovarian AMH, while QUET + CAFF slowed source EEG frequency to δ range and increased brain E2. CONCLUSIONS CAFF treatment triggered brain and ovarian derangements partially antagonized with concurrent AGO or QUET administration but with no overt affection of estrus cycle progression. Estrogenic, adenosinergic, and melatonergic signaling and brain-ovarian crosstalk may explain these effects.
Collapse
Affiliation(s)
- Sherine Abdelmissih
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt.
| | - Sara Adel Hosny
- Department of Medical Histology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Heba M Elwi
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Walaa Mohamed Sayed
- Department of Anatomy and Embryology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Mohamed Ali Eshra
- Department of Medical Physiology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Olfat Gamil Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Nancy F Samir
- Department of Medical Physiology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Li HY, Makatsoris C, Forbes B. Particulate bioaerogels for respiratory drug delivery. J Control Release 2024; 370:195-209. [PMID: 38641021 PMCID: PMC11847494 DOI: 10.1016/j.jconrel.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The bioaerogel microparticles have been recently developed for respiratory drug delivery and attract fast increasing interests. These highly porous microparticles have ultralow density and hence possess much reduced aerodynamic diameter, which favour them with greatly enhanced dispersibility and improved aerosolisation behaviour. The adjustable particle geometric dimensions by varying preparation methods and controlling operation parameters make it possible to fabricate bioaerogel microparticles with accurate sizes for efficient delivery to the targeted regions of respiratory tract (i.e. intranasal and pulmonary). Additionally, the technical process can provide bioaerogel microparticles with the opportunities of accommodating polar, weak polar and non-polar drugs at sufficient amount to satisfy clinical needs, and the adsorbed drugs are primarily in the amorphous form that potentially can facilitate drug dissolution and improve bioavailability. Finally, the nature of biopolymers can further offer additional advantageous characteristics of improved mucoadhesion, sustained drug release and subsequently elongated time for continuous treatment on-site. These fascinating features strongly support bioaerogel microparticles to become a novel platform for effective delivery of a wide range of drugs to the targeted respiratory regions, with increased drug residence time on-site, sustained drug release, constant treatment for local and systemic diseases and anticipated better-quality of therapeutic effects.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural & Mathematical Sciences, King's College London, WC2R 2LS, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|