1
|
Florêncio M, Chagas MCB, Guimarães-Costa A, Oliveira J, Waclawiak I, Oliveira TKF, Saraiva EM, Freitas-Mesquita AL, Meyer-Fernandes JR, Aragão-Farias L, Trindade CE, Cuervo P, do Nascimento RA, Moreira OC, Ribeiro-Gomes FL, Traub-Csekö YM, Telleria EL, Vaselek S, Leštinová T, Volf P, Späth GF, Cupolillo E, Boité MC. Gene deletion as a possible strategy adopted by New World Leishmania infantum to maximize geographic dispersion. PLoS Pathog 2025; 21:e1012938. [PMID: 40111992 PMCID: PMC11975383 DOI: 10.1371/journal.ppat.1012938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/07/2025] [Accepted: 01/27/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The present study investigates implications of a sub-chromosomal deletion in Leishmania infantum strains, the causative agent of American Visceral Leishmaniasis (AVL). Primarily found in New World strains, the deletion leads to the absence of the ecto-3'-nucleotidase/nuclease enzyme, impacting parasite virulence, pathogenicity, and drug susceptibility. The factors favoring prevalence and the widespread geographic distribution of these deleted mutant parasites (DEL) in the NW (NW) are discussed under the generated data. METHODS We conducted phenotypic assessments of the sub-chromosomal deletion through in vitro assays with axenic parasites and experimental infections in both in vitro and in vivo models of vertebrate and invertebrate hosts using geographically diverse mutant field isolates. RESULTS Despite reduced pathogenicity, the DEL strains efficiently infect vertebrate hosts and exhibit relevant differences, including enhanced metacyclogenesis and colonization rates in sand flies, potentially facilitating transmission. This combination may represent a more effective way to maintain and disperse the transmission cycle of DEL strains. CONCLUSIONS Phenotypic assessments reveal altered parasite fitness, with potential enhanced transmissibility at the population level. Reduced susceptibility of DEL strains to miltefosine, a key drug in VL treatment, further complicates control efforts. The study underscores the importance of typing parasite genomes for surveillance and control, advocating for the sub-chromosomal deletion as a molecular marker in AVL management.
Collapse
Affiliation(s)
- Monique Florêncio
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Anderson Guimarães-Costa
- Laboratório de Imunologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jullyanna Oliveira
- Laboratório de Imunologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ingrid Waclawiak
- Laboratório de Imunologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamara K. F. Oliveira
- Laboratório de Imunologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Laboratório de Imunologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Aragão-Farias
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Camilly Enes Trindade
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Otacilio C. Moreira
- Laboratory of Molecular Virology and Parasitology, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Yara M. Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Slavica Vaselek
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Gerald F. Späth
- Institut Pasteur, Univerisité Paris Cité, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e tecnologia EpiAMO (INCT). Porto Velho, Brazil
| | - Mariana Côrtes Boité
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Johnston J, Taylor J, Nahata S, Gatica-Gomez A, Anderson YL, Kiger S, Pham T, Karimi K, Lacar JF, Carter NS, Roberts SC. Putrescine Depletion in Leishmania donovani Parasites Causes Immediate Proliferation Arrest Followed by an Apoptosis-like Cell Death. Pathogens 2025; 14:137. [PMID: 40005515 PMCID: PMC11858418 DOI: 10.3390/pathogens14020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
The polyamine pathway in Leishmania parasites has emerged as a promising target for therapeutic intervention, yet the functions of polyamines in parasites remain largely unexplored. Ornithine decarboxylase (ODC) and spermidine synthase (SPDSYN) catalyze the sequential conversion of ornithine to putrescine and spermidine. We previously found that Leishmania donovani Δodc and Δspdsyn mutants exhibit markedly reduced growth in vitro and diminished infectivity in mice, with the effect being most pronounced in putrescine-depleted Δodc mutants. Here, we report that, in polyamine-free media, ∆odc mutants arrested proliferation and replication, while ∆spdsyn mutants showed a slow growth and replication phenotype. Starved ∆odc parasites also exhibited a marked reduction in metabolism, which was not observed in the starved ∆spdsyn cells. In contrast, both mutants displayed mitochondrial membrane hyperpolarization. Hallmarks of apoptosis, specifically DNA fragmentation and membrane modifications, were observed in Δodc mutants incubated in polyamine-free media. These results show that putrescine depletion had an immediate detrimental effect on cell growth, replication, and mitochondrial metabolism and caused an apoptosis-like death phenotype. Our findings establish ODC as the most promising therapeutic target within the polyamine biosynthetic pathway for treating leishmaniasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sigrid C. Roberts
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (J.J.); (J.T.); (S.N.); (A.G.-G.); (Y.L.A.); (S.K.); (T.P.); (K.K.); (J.-F.L.); (N.S.C.)
| |
Collapse
|
3
|
Ewald S, Nasuhidehnavi A, Feng TY, Lesani M, McCall LI. The intersection of host in vivo metabolism and immune responses to infection with kinetoplastid and apicomplexan parasites. Microbiol Mol Biol Rev 2024; 88:e0016422. [PMID: 38299836 PMCID: PMC10966954 DOI: 10.1128/mmbr.00164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.
Collapse
Affiliation(s)
- Sarah Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|