1
|
Gong X, Xu L, Cai P. Friend or foe of tripartite motif-containing protein 21 in cardiovascular disease: A review. Int J Biol Macromol 2025; 308:142682. [PMID: 40164260 DOI: 10.1016/j.ijbiomac.2025.142682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
As an E3 ubiquitin ligase and an Fc receptor, tripartite motif-containing protein 21 (TRIM21) plays a crucial role in immune defense, signal transduction, and cellular regulation. TRIM21 is widely expressed in various tissues, but it is particularly abundant in cardiovascular tissues and is involved in the pathogenesis of various cardiovascular diseases (CVDs). However, although TRIM21 is involved in the regulation of several key molecular pathways in the immune system, its specific role in CVD remains unclear. In this review, we comprehensively summarize the regulatory role of TRIM21 in signaling pathways and discuss the function of TRIM21 in CVD, to provide a systematic understanding of this important protein in CVD and offer insights for further research into the pathogenesis of CVD and its potential applications.
Collapse
Affiliation(s)
- Xiangmei Gong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Liu WL, Peng YH. Case Report: Bradycardia in neonatal lupus: differential diagnosis between atrioventricular block and premature atrial contractions with block. Front Pediatr 2024; 12:1337135. [PMID: 39144470 PMCID: PMC11322077 DOI: 10.3389/fped.2024.1337135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Neonatal lupus may be associated with severe cardiac conduction problems, including high-degree or complete atrioventricular (AV) block, necessitating immediate pacemaker implantation during the neonatal period. However, cardiac manifestations of neonatal lupus may extend beyond AV block. Our case was a full-term female neonate, who presented with fetal arrhythmia and bradycardia with a heart rate of approximately 70-75 beats per minute after birth. Neonatal lupus was diagnosed later due to positive maternal and neonatal anti-SSA/Ro antibody. High-degree AV block was considered initially but bigeminy premature atrial contractions (PACs) with block was confirmed through a detailed evaluation of an electrocardiogram, which demonstrated unfixed PP intervals and fixed RR intervals. Atrial tachycardia (AT) developed when the neonate was 23 days old. The key point that differentiates high-degree AV block from PACs with block is the PP interval. The PP interval is fixed in high-degree AV block and unfixed in PACs with block. Careful differential diagnosis is required in neonates with bradycardia because it may lead to very different management. Our case presents a good illustration of why these arrhythmias need to be differentiated. Furthermore, our case may be the first of neonatal lupus with AT.
Collapse
Affiliation(s)
- Wei-Li Liu
- Department of Pediatrics, Dalin Tzu Chi Hospital, Dalin, Chiayi County, Taiwan
| | - Ying-Hsuan Peng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Pediatrics, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Limquiaco KNY, Salido EO. Complete Congenital Heart Block in the Offspring of an Asymptomatic Woman with Isolated High Titer Anti-Ro Antibody. ACTA MEDICA PHILIPPINA 2024; 58:84-89. [PMID: 38939855 PMCID: PMC11199349 DOI: 10.47895/amp.vi0.6358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Among pregnant women, 1-2% are anti-Ro positive and while half of them have symptoms of connective tissue disease, the rest are asymptomatic. The presence of anti-Ro is of concern because of the risk of congenital heart block in the child. We report the case of an asymptomatic 27-year-old G2P1(1001) woman, who presented with persistent fetal bradycardia in her 21st week of gestation (AOG) and was found to have elevated titers for anti-Ro (>320 U/ml). Hydroxychloroquine 200 mg/day and prednisone 10 mg/day were given from the 33rd week of gestation up until the delivery. At 37 weeks AOG, she delivered a live male neonate with a complete heart block. On the 6th day of life, the infant remained bradycardic, hence a pacemaker was inserted and heart rate maintained at 100-120 bpm. On subsequent follow-ups, the mother and child did not develop any systemic manifestations and the infant was thriving well. While a diseased condition may not be apparent in a pregnant anti-Ro positive woman, the risk of neonatal lupus (NL) is demonstrated in this patient's case. This report illustrates how prenatal care of an asymptomatic woman led to the discovery of a fetal abnormality and served to prepare the family and the medical team to ably handle the birth and subsequent care of a neonate with NL.
Collapse
Affiliation(s)
- Kristine Niña Y Limquiaco
- Division of Rheumatology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Evelyn O Salido
- Division of Rheumatology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| |
Collapse
|
4
|
Huang Y, Deng J, Liu J, Yang F, He Y. Autoimmune congenital heart block: a case report and review of the literature related to pathogenesis and pregnancy management. Arthritis Res Ther 2024; 26:8. [PMID: 38167489 PMCID: PMC10759413 DOI: 10.1186/s13075-023-03246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Autoimmune congenital heart block (ACHB) is a passively acquired immune-mediated disease characterized by the presence of maternal antibodies against components of the Ro/SSA and La/SSB ribonucleoprotein complex that mainly affects the cardiac conducting system. ACHB occurs in 2% of women with positive anti-Ro/SSA and anti-La/SSB antibodies and causes a high risk of intrauterine fetal death, neonatal mortality, and long-term sequelae. In this review, we first describe a case of ACHB to provide preliminary knowledge. Then, we discuss the possible pathogenic mechanisms of ACHB; summarize the pregnancy management of patients with positive anti-Ro/SSA and anti-La/SSB antibodies and/or rheumatic diseases, the prevention of ACHB, and the treatment of ACHB fetuses; and propose routine screening of these antibodies for the general population. Careful follow-up, which consists of monitoring the fetal heart rate, is feasible and reassuring for pregnant women with positive anti-Ro/SSA and/or anti-La/SSB antibodies to lower the risk of ACHB in fetuses. Moreover, maternal administration of hydroxychloroquine may be useful in preventing ACHB in pregnant women with anti-Ro/SSA and/or anti-La/SSB antibodies.
Collapse
Affiliation(s)
- Ying Huang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, No. 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, China
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Jialin Deng
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, No. 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, China
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Jinghua Liu
- Department of Pediatrics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Fangyuan Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, No. 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, China.
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China.
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, No. 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, China.
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China.
| |
Collapse
|
5
|
Mone K, Reddy J. The knowns and unknowns of cardiac autoimmunity in viral myocarditis. Rev Med Virol 2023; 33:e2478. [PMID: 37658748 DOI: 10.1002/rmv.2478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Myocarditis can result from various infectious and non-infectious causes that can lead to dilated cardiomyopathy (DCM) and heart failure. Among the infectious causes, viruses are commonly suspected. But the challenge is our inability to demonstrate infectious viral particles during clinical presentations, partly because by that point, the viruses would have damaged the tissues and be cleared by the immune system. Therefore, viral signatures such as viral nucleic acids and virus-reactive antibodies may be the only readouts pointing to viruses as potential primary triggers of DCM. Thus, it becomes hard to explain persistent inflammatory infiltrates that might occur in individuals affected with chronic myocarditis/DCM manifesting myocardial dysfunctions. In these circumstances, autoimmunity is suspected, and antibodies to various autoantigens have been demonstrated, suggesting that immune therapies to suppress the autoimmune responses may be necessary. From this perspective, we endeavoured to determine whether or not the known viral causes are associated with development of autoimmune responses to cardiac antigens that include both cardiotropic and non-cardiotropic viruses. If so, what their nature and significance are in developing chronic myocarditis resulting from viruses as primary triggers.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
6
|
Mendes LC, Viana GMM, Nencioni ALA, Pimenta DC, Beraldo-Neto E. Scorpion Peptides and Ion Channels: An Insightful Review of Mechanisms and Drug Development. Toxins (Basel) 2023; 15:238. [PMID: 37104176 PMCID: PMC10145618 DOI: 10.3390/toxins15040238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
The Buthidae family of scorpions consists of arthropods with significant medical relevance, as their venom contains a diverse range of biomolecules, including neurotoxins that selectively target ion channels in cell membranes. These ion channels play a crucial role in regulating physiological processes, and any disturbance in their activity can result in channelopathies, which can lead to various diseases such as autoimmune, cardiovascular, immunological, neurological, and neoplastic conditions. Given the importance of ion channels, scorpion peptides represent a valuable resource for developing drugs with targeted specificity for these channels. This review provides a comprehensive overview of the structure and classification of ion channels, the action of scorpion toxins on these channels, and potential avenues for future research. Overall, this review highlights the significance of scorpion venom as a promising source for discovering novel drugs with therapeutic potential for treating channelopathies.
Collapse
Affiliation(s)
- Lais Campelo Mendes
- Programa de Pós-Graduação em Ciências—Toxinologia do Instituto Butantan, São Paulo 05503-900, Brazil
- Laboratório de Bioquímica do Instituto Butantan, São Paulo 05503-900, Brazil
| | | | | | | | - Emidio Beraldo-Neto
- Laboratório de Bioquímica do Instituto Butantan, São Paulo 05503-900, Brazil
| |
Collapse
|
7
|
Zaveri S, Srivastava U, Qu YS, Chahine M, Boutjdir M. Pathophysiology of Ca v1.3 L-type calcium channels in the heart. Front Physiol 2023; 14:1144069. [PMID: 37025382 PMCID: PMC10070707 DOI: 10.3389/fphys.2023.1144069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Ca2+ plays a crucial role in excitation-contraction coupling in cardiac myocytes. Dysfunctional Ca2+ regulation alters the force of contraction and causes cardiac arrhythmias. Ca2+ entry into cardiomyocytes is mediated mainly through L-type Ca2+ channels, leading to the subsequent Ca2+ release from the sarcoplasmic reticulum. L-type Ca2+ channels are composed of the conventional Cav1.2, ubiquitously expressed in all heart chambers, and the developmentally regulated Cav1.3, exclusively expressed in the atria, sinoatrial node, and atrioventricular node in the adult heart. As such, Cav1.3 is implicated in the pathogenesis of sinoatrial and atrioventricular node dysfunction as well as atrial fibrillation. More recently, Cav1.3 de novo expression was suggested in heart failure. Here, we review the functional role, expression levels, and regulation of Cav1.3 in the heart, including in the context of cardiac diseases. We believe that the elucidation of the functional and molecular pathways regulating Cav1.3 in the heart will assist in developing novel targeted therapeutic interventions for the aforementioned arrhythmias.
Collapse
Affiliation(s)
- Sahil Zaveri
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, NY, United States
| | - Ujala Srivastava
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
| | - Yongxia Sarah Qu
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, NY, United States
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, New York, NY, United States
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada
- Department of Medicine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, NY, United States
- Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
- *Correspondence: Mohamed Boutjdir,
| |
Collapse
|
8
|
Colecraft HM, Trimmer JS. Controlling ion channel function with renewable recombinant antibodies. J Physiol 2022; 600:2023-2036. [PMID: 35238051 PMCID: PMC9058206 DOI: 10.1113/jp282403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Selective ion channel modulators play a critical role in physiology in defining the contribution of specific ion channels to physiological function and as proof of concept for novel therapeutic strategies. Antibodies are valuable research tools that have broad uses including defining the expression and localization of ion channels in native tissue, and capturing ion channel proteins for subsequent analyses. In this review, we detail how renewable and recombinant antibodies can be used to control ion channel function. We describe the different forms of renewable and recombinant antibodies that have been used and the mechanisms by which they modulate ion channel function. We highlight the use of recombinant antibodies that are expressed intracellularly (intrabodies) as genetically-encoded tools to control ion channel function. We also offer perspectives of avenues of future research that may be opened by the application of emerging technologies for engineering recombinant antibodies for enhanced utility in ion channel research. Overall, this review provides insights that may help stimulate and guide interested researchers to develop and incorporate renewable and recombinant antibodies as valuable tools to control ion channel function. Abstract figure legend Two different approaches for controlling ion channel function using renewable recombinant antibodies. On the left, an externally applied intact IgG antibody (purple) binds to an extracellular domain of an ion channel (light blue) to control ion channel function. On the right, a genetically-encoded intrabody, in this example a camelid nanobody (green) fused to an effector molecule (red) binds to an intracellular auxiliary subunit of an ion channel (dark blue) to control ion channel function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - James S Trimmer
- Department of Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Lazzerini PE, Laghi-Pasini F, Boutjdir M, Capecchi PL. Anti-Ro/SSA Antibodies and the Autoimmune Long-QT Syndrome. Front Med (Lausanne) 2021; 8:730161. [PMID: 34552948 PMCID: PMC8450397 DOI: 10.3389/fmed.2021.730161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Autoimmunity is increasingly recognized as a novel pathogenic mechanism for cardiac arrhythmias. Several arrhythmogenic autoantibodies have been identified, cross-reacting with different types of surface proteins critically involved in the cardiomyocyte electrophysiology, primarily ion channels (autoimmune cardiac channelopathies). Specifically, some of these autoantibodies can prolong the action potential duration leading to acquired long-QT syndrome (LQTS), a condition known to increase the risk of life-threatening ventricular arrhythmias, particularly Torsades de Pointes (TdP). The most investigated form of autoimmune LQTS is associated with the presence of circulating anti-Ro/SSA-antibodies, frequently found in patients with autoimmune diseases (AD), but also in a significant proportion of apparently healthy subjects of the general population. Accumulating evidence indicates that anti-Ro/SSA-antibodies can markedly delay the ventricular repolarization via a direct inhibitory cross-reaction with the extracellular pore region of the human-ether-a-go-go-related (hERG) potassium channel, resulting in a higher propensity for anti-Ro/SSA-positive subjects to develop LQTS and ventricular arrhythmias/TdP. Recent population data demonstrate that the risk of LQTS in subjects with circulating anti-Ro/SSA antibodies is significantly increased independent of a history of overt AD, intriguingly suggesting that these autoantibodies may silently contribute to a number of cases of ventricular arrhythmias and cardiac arrest in the general population. In this review, we highlight the current knowledge in this topic providing complementary basic, clinical and population health perspectives.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Veterans Affairs New York Harbor Healthcare System, State University of New York Downstate Medical Center, New York, NY, United States.,New York University School of Medicine, New York, NY, United States
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Marian AJ, Asatryan B, Wehrens XHT. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc Res 2021; 116:1600-1619. [PMID: 32348453 DOI: 10.1093/cvr/cvaa116] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are common, often the first, and sometimes the life-threatening manifestations of hereditary cardiomyopathies. Pathogenic variants in several genes known to cause hereditary cardiac arrhythmias have also been identified in the sporadic cases and small families with cardiomyopathies. These findings suggest a shared genetic aetiology of a subset of hereditary cardiomyopathies and cardiac arrhythmias. The concept of a shared genetic aetiology is in accord with the complex and exquisite interplays that exist between the ion currents and cardiac mechanical function. However, neither the causal role of cardiac arrhythmias genes in cardiomyopathies is well established nor the causal role of cardiomyopathy genes in arrhythmias. On the contrary, secondary changes in ion currents, such as post-translational modifications, are common and contributors to the pathogenesis of arrhythmias in cardiomyopathies through altering biophysical and functional properties of the ion channels. Moreover, structural changes, such as cardiac hypertrophy, dilatation, and fibrosis provide a pro-arrhythmic substrate in hereditary cardiomyopathies. Genetic basis and molecular biology of cardiac arrhythmias in hereditary cardiomyopathies are discussed.
Collapse
Affiliation(s)
- Ali J Marian
- Department of Medicine, Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xander H T Wehrens
- Department of Biophysics and Molecular Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Milazzo R, Ligato E, Laoreti A, Ferri G, Basili L, Serati L, Brucato A, Cetin I. Home fetal heart rate monitoring in anti Ro/SSA positive pregnancies: Literature review and case report. Eur J Obstet Gynecol Reprod Biol 2021; 259:1-6. [PMID: 33556767 DOI: 10.1016/j.ejogrb.2021.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Anti-Ro/SSA antibodies are associated with a risk of 1-2 % to develop complete atrioventricular block (AVB) in fetuses of positive mothers. Complete AVB is irreversible, but studies suggest that anti-inflammatory treatment during the transition period from a normal fetal heart rate (FHR) to an AVB might stop this progression and restore sinus rhythm. The most efficient method for diagnostic evaluation of this arrhythmia is the pulsed-Doppler fetal echocardiography. However, weekly or bi-weekly recommended fetal echocardiographic surveillance can rarely identify an AVB in time for treatment success, also because the transition from a normal rhythm to a third degree AVB is very fast. Daily FHR monitoring in a medical facility could increase the chances of identifying the AVB onset but is difficult to realize. For this reason, an alternative method of FHR monitoring, performed directly by mothers in their home context, has been recently proposed. We present a case report utilizing this approach and review the current evidence about this condition.
Collapse
Affiliation(s)
- Roberta Milazzo
- Department of Woman, Mother and Neonate, "V. Buzzi" Children Hospital, ASST Fatebenefratelli Sacco, Milan, Italy.
| | - Elisa Ligato
- Department of Woman, Mother and Neonate, "V. Buzzi" Children Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Arianna Laoreti
- Department of Woman, Mother and Neonate, "V. Buzzi" Children Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Giulia Ferri
- Department of Woman, Mother and Neonate, "V. Buzzi" Children Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Ludovica Basili
- Department of Woman, Mother and Neonate, "V. Buzzi" Children Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Lisa Serati
- Internal Medicine, Fatebenefratelli Hospital, Milan, Italy
| | | | - Irene Cetin
- Department of Woman, Mother and Neonate, "V. Buzzi" Children Hospital, ASST Fatebenefratelli Sacco, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| |
Collapse
|
12
|
Popescu MR, Dudu A, Jurcut C, Ciobanu AM, Zagrean AM, Panaitescu AM. A Broader Perspective on Anti-Ro Antibodies and Their Fetal Consequences-A Case Report and Literature Review. Diagnostics (Basel) 2020; 10:E478. [PMID: 32674462 PMCID: PMC7399931 DOI: 10.3390/diagnostics10070478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
The presence of maternal Anti-Ro/Anti-La antibodies causes a passively acquired autoimmunity that may be associated with serious fetal complications. The classic example is the autoimmune-mediated congenital heart block (CHB) which is due in most cases to the transplacental passage of Anti-Ro/Anti-La antibodies. The exact mechanisms through which these pathologic events arise are linked to disturbances in calcium channels function, impairment of calcium homeostasis and ultimately apoptosis, inflammation and fibrosis. CHB still represents a challenging diagnosis and a source of debate regarding the best management. As the third-degree block is usually irreversible, the best strategy is risk awareness and prevention. Although CHB is a rare occurrence, it affects one in 20,000 live births, with a high overall mortality rate (up to 20%, with 70% of in utero deaths). There is also concern over the lifelong consequences, as most babies need a pacemaker. This review aims to offer, apart from the data needed for a better understanding of the issue at hand, a broader perspective of the specialists directly involved in managing this pathology: the rheumatologist, the maternal-fetal specialist and the cardiologist. To better illustrate the theoretical facts presented, we also include a representative clinical case.
Collapse
Affiliation(s)
- Mihaela Roxana Popescu
- Cardiology Department, Elias University Hospital, “Carol Davila” University of Medicine and Pharmacy, 011461 Bucharest, Romania
| | - Andreea Dudu
- Internal Medicine Department, “Dr Carol Davila” Central Emergency University Military Hospital, 010825 Bucharest, Romania; (A.D.); (C.J.)
| | - Ciprian Jurcut
- Internal Medicine Department, “Dr Carol Davila” Central Emergency University Military Hospital, 010825 Bucharest, Romania; (A.D.); (C.J.)
| | - Anca Marina Ciobanu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 011171 Bucharest, Romania; (A.M.C.); (A.M.P.)
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 011171 Bucharest, Romania; (A.M.C.); (A.M.P.)
| |
Collapse
|
13
|
Torrente AG, Mesirca P, Bidaud I, Mangoni ME. Channelopathies of voltage-gated L-type Cav1.3/α 1D and T-type Cav3.1/α 1G Ca 2+ channels in dysfunction of heart automaticity. Pflugers Arch 2020; 472:817-830. [PMID: 32601767 DOI: 10.1007/s00424-020-02421-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 10/24/2022]
Abstract
The heart automaticity is a fundamental physiological function in vertebrates. The cardiac impulse is generated in the sinus node by a specialized population of spontaneously active myocytes known as "pacemaker cells." Failure in generating or conducting spontaneous activity induces dysfunction in cardiac automaticity. Several families of ion channels are involved in the generation and regulation of the heart automaticity. Among those, voltage-gated L-type Cav1.3 (α1D) and T-type Cav3.1 (α1G) Ca2+ channels play important roles in the spontaneous activity of pacemaker cells. Ca2+ channel channelopathies specifically affecting cardiac automaticity are considered rare. Recent research on familial disease has identified mutations in the Cav1.3-encoding CACNA1D gene that underlie congenital sinus node dysfunction and deafness (OMIM # 614896). In addition, both Cav1.3 and Cav3.1 channels have been identified as pathophysiological targets of sinus node dysfunction and heart block, caused by congenital autoimmune disease of the cardiac conduction system. The discovery of channelopathies linked to Cav1.3 and Cav3.1 channels underscores the importance of Ca2+ channels in the generation and regulation of heart's automaticity.
Collapse
Affiliation(s)
- Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France. .,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France.
| |
Collapse
|
14
|
Tribulova N, Kurahara LH, Hlivak P, Hirano K, Szeiffova Bacova B. Pro-Arrhythmic Signaling of Thyroid Hormones and Its Relevance in Subclinical Hyperthyroidism. Int J Mol Sci 2020; 21:E2844. [PMID: 32325836 PMCID: PMC7215427 DOI: 10.3390/ijms21082844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
A perennial task is to prevent the occurrence and/or recurrence of most frequent or life-threatening cardiac arrhythmias such as atrial fibrillation (AF) and ventricular fibrillation (VF). VF may be lethal in cases without an implantable cardioverter defibrillator or with failure of this device. Incidences of AF, even the asymptomatic ones, jeopardize the patient's life due to its complication, notably the high risk of embolic stroke. Therefore, there has been a growing interest in subclinical AF screening and searching for novel electrophysiological and molecular markers. Considering the worldwide increase in cases of thyroid dysfunction and diseases, including thyroid carcinoma, we aimed to explore the implication of thyroid hormones in pro-arrhythmic signaling in the pathophysiological setting. The present review provides updated information about the impact of altered thyroid status on both the occurrence and recurrence of cardiac arrhythmias, predominantly AF. Moreover, it emphasizes the importance of both thyroid status monitoring and AF screening in the general population, as well as in patients with thyroid dysfunction and malignancies. Real-world data on early AF identification in relation to thyroid function are scarce. Even though symptomatic AF is rare in patients with thyroid malignancies, who are under thyroid suppressive therapy, clinicians should be aware of potential interaction with asymptomatic AF. It may prevent adverse consequences and improve the quality of life. This issue may be challenging for an updated registry of AF in clinical practice. Thyroid hormones should be considered a biomarker for cardiac arrhythmias screening and their tailored management because of their multifaceted cellular actions.
Collapse
Affiliation(s)
- Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 76 0793, Japan; (L.H.K.); (K.H.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 76 0793, Japan; (L.H.K.); (K.H.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia
| |
Collapse
|
15
|
Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, Tao X, Xu C, Hu X, Yin Z, Sun H. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 318:H820-H829. [PMID: 32083972 DOI: 10.1152/ajpheart.00734.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogen deficiency is considered to be an important factor leading to cardiovascular diseases (CVDs). Indeed, the prevalence of CVDs in postmenopausal women exceeds that of premenopausal women and men of the same age. Recent research findings provide evidence that estrogen plays a pivotal role in the regulation of calcium homeostasis and therefore fine-tunes normal cardiomyocyte contraction and relaxation processes. Disruption of calcium homeostasis is closely associated with the pathological mechanism of CVDs. Thus, this paper maps out and summarizes the effects and mechanisms of estrogen on calcium handling proteins in cardiac myocytes, including L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+ release channel named ryanodine receptor, sarco(endo)plasmic reticulum Ca2+-ATPase, and sodium-calcium exchanger. In so doing, we provide theoretical and experimental evidence for the successful design of estrogen-based prevention and treatment therapies for CVDs.
Collapse
Affiliation(s)
- Lijuan Jiao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingjin Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Xi Tao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenxi Xu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xide Hu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zeyuan Yin
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
16
|
Li Q, Zhai Z, Li J. Fibroblast growth factor homologous factors are potential ion channel modifiers associated with cardiac arrhythmias. Eur J Pharmacol 2020; 871:172920. [PMID: 31935396 DOI: 10.1016/j.ejphar.2020.172920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
Abstract
Stable electrical activity in cardiac myocytes is the basis of maintaining normal myocardial systolic and diastolic function. Cardiac ionic currents and their associated regulatory proteins are crucial to myocyte excitability and heart function. Fibroblast growth factor homologous factors (FHFs) are intracellular noncanonical fibroblast growth factors (FGFs) that are incapable of activating FGF receptors. The main functions of FHFs are to regulate ion channels and influence excitability, which are processes involved in sustaining normal cardiac function. In addition to their regulatory effect on ion channels, FHFs can be regulators of cardiac hypertrophic signaling and alter signaling pathways, including the protein kinase, NF<kappa>B, and p53 pathways, which are related to the pathological processes of heart diseases. This review emphasizes FHF-mediated regulation of cardiac excitability and the association of FHFs with cardiac arrhythmias and explores the idea that abnormal FHFs may be an unrecognized cause of cardiac disorders.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhenyu Zhai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
17
|
Stanley CE, Mauss AS, Borst A, Cooper RL. The Effects of Chloride Flux on Drosophila Heart Rate. Methods Protoc 2019; 2:mps2030073. [PMID: 31443492 PMCID: PMC6789470 DOI: 10.3390/mps2030073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
Approaches are sought after to regulate ionotropic and chronotropic properties of the mammalian heart. Electrodes are commonly used for rapidly exciting cardiac tissue and resetting abnormal pacing. With the advent of optogenetics and the use of tissue-specific expression of light-activated channels, cardiac cells cannot only be excited but also inhibited with ion-selective conductance. As a proof of concept for the ability to slow down cardiac pacing, anion-conducting channelrhodopsins (GtACR1/2) and the anion pump halorhodopsin (eNpHR) were expressed in hearts of larval Drosophila and activated by light. Unlike body wall muscles in most animals, the equilibrium potential for Cl− is more positive as compared to the resting membrane potential in larval Drosophila. As a consequence, upon activating the two forms of GtACR1 and 2 with low light intensity the heart rate increased, likely due to depolarization and opening of voltage-gated Ca2+ channels. However, with very intense light activation the heart rate ceases, which may be due to Cl– shunting to the reversal potential for chloride. Activating eNpHR hyperpolarizes body wall and cardiac muscle in larval Drosophila and rapidly decreases heart rate. The decrease in heart rate is related to light intensity. Intense light activation of eNpHR stops the heart from beating, whereas lower intensities slowed the rate. Even with upregulation of the heart rate with serotonin, the pacing of the heart was slowed with light. Thus, regulation of the heart rate in Drosophila can be accomplished by activating anion-conducting channelrhodopsins using light. These approaches are demonstrated in a genetically amenable insect model.
Collapse
Affiliation(s)
- Catherine E Stanley
- Department of Biology, Center for Muscle Biology. University of Kentucky, Lexington, KY 40506-0225, USA
| | - Alex S Mauss
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Alexander Borst
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Robin L Cooper
- Department of Biology, Center for Muscle Biology. University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
18
|
Hamilton RM. Editorial commentary: Live better electrically? Optimizing the timing and application of pacing in congenital heart block. Trends Cardiovasc Med 2019; 30:287-288. [PMID: 31395307 DOI: 10.1016/j.tcm.2019.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Robert M Hamilton
- The Hospital for Sick Children, Pediatrics (Cardiology), 555 University Ave Rm 1725D, Toronto, Ontario M5G1X8, Canada.
| |
Collapse
|