1
|
Joh JH. Clinical Applications of Artificial Intelligence in Vascular Surgery. Vasc Specialist Int 2025; 41:8. [PMID: 40302180 PMCID: PMC12041748 DOI: 10.5758/vsi.240120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/09/2025] [Accepted: 04/01/2025] [Indexed: 05/01/2025] Open
Abstract
Artificial intelligence (AI) has been applied in many fields, including science, technology, and medicine. However, vascular surgeons face many obstacles and limitations in using and applying AI because of their limited understanding of computer science, programming languages, and complex AI technologies, such as machine learning, deep learning, and artificial neural networks. This article describes the basic knowledge of AI, applications of AI technologies in vascular surgery, and the use of smart wearable devices. Finally, the challenges and limitations of AI are discussed as essential issues hindering its widespread application in vascular surgery.
Collapse
Affiliation(s)
- Jin Hyun Joh
- Department of Surgery, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Wei X, Wang M, Yu S, Han Z, Li C, Zhong Y, Zhang M, Yang T. Mapping the knowledge of omics in myocardial infarction: A scientometric analysis in R Studio, VOSviewer, Citespace, and SciMAT. Medicine (Baltimore) 2025; 104:e41368. [PMID: 39960900 PMCID: PMC11835070 DOI: 10.1097/md.0000000000041368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Many researchers nowadays choose multi-omics techniques for myocardial infarction studies. However, there's yet to be a review article integrating myocardial infarction multi-omics. Hence, this study adopts the popular bibliometrics. Based on its principles, we use software like R Studio, Vosviewer, Citespace, and SciMAT to analyze literature data of myocardial infarction omics research (1991-2022) from Web of Science. By extracting key information and calculating weights, we conduct analyses from 4 aspects: Collaboration Network Analysis, Co-word Analysis, Citing and Cited Journal Analysis, and Co-citation and Clustering Analysis, aiming to understand the field's cooperation, research topic evolution, and knowledge flow. The results show that myocardial infarction omics research is still in its early stage with limited international cooperation. In terms of knowledge flow, there's no significant difference within the discipline, but non-biomedical disciplines have joined, indicating an interdisciplinary integration trend. In the overall research field, genomics remains the main topic with many breakthroughs identifying susceptibility sites. Meanwhile, other omics fields like lipidomics and proteomics are also progressing, clarifying the pathogenesis. The cooperation details in this article enable researchers to connect with others, facilitating their research. The evolution trend of subject terms helps them set goals and directions, quickly grasp the development context, and read relevant literature. Journal analysis offers submission suggestions, and the analysis of research base and frontier provides references for the research's future development.
Collapse
Affiliation(s)
- Xuan Wei
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Min Wang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Shengnan Yu
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Zhengqi Han
- Institute for Digital Technology and Law (IDTL), China University of Political Science and Law, Beijing, China
- CUPL Scientometrics and Evaluation Center of Rule of Law, China University of Political Science and Law, Beijing, China
| | - Chang Li
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Yue Zhong
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Mengzhou Zhang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Tiantong Yang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| |
Collapse
|
3
|
Tolu‐Akinnawo OZ, Ezekwueme F, Omolayo O, Batheja S, Awoyemi T. Advancements in Artificial Intelligence in Noninvasive Cardiac Imaging: A Comprehensive Review. Clin Cardiol 2025; 48:e70087. [PMID: 39871619 PMCID: PMC11772728 DOI: 10.1002/clc.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Technological advancements in artificial intelligence (AI) are redefining cardiac imaging by providing advanced tools for analyzing complex health data. AI is increasingly applied across various imaging modalities, including echocardiography, magnetic resonance imaging (MRI), computed tomography (CT), and nuclear imaging, to enhance diagnostic workflows and improve patient outcomes. HYPOTHESIS Integrating AI into cardiac imaging enhances image quality, accelerates processing times, and improves diagnostic accuracy, enabling timely and personalized interventions that lead to better health outcomes. METHODS A comprehensive literature review was conducted to examine the impact of machine learning and deep learning algorithms on diagnostic accuracy, the detection of subtle patterns and anomalies, and key challenges such as data quality, patient safety, and regulatory barriers. RESULTS Findings indicate that AI integration in cardiac imaging enhances image quality, reduces processing times, and improves diagnostic precision, contributing to better clinical decision-making. Emerging machine learning techniques demonstrate the ability to identify subtle cardiac abnormalities that traditional methods may overlook. However, significant challenges persist, including data standardization, regulatory compliance, and patient safety concerns. CONCLUSIONS AI holds transformative potential in cardiac imaging, significantly advancing diagnosis and patient outcomes. Overcoming barriers to implementation will require ongoing collaboration among clinicians, researchers, and regulatory bodies. Further research is essential to ensure the safe, ethical, and effective integration of AI in cardiology, supporting its broader application to improve cardiovascular health.
Collapse
Affiliation(s)
| | - Francis Ezekwueme
- Department of Internal MedicineUniversity of Pittsburgh Medical CenterMcKeesportPennsylvaniaUSA
| | - Olukunle Omolayo
- Department of Internal MedicineLugansk State Medical UniversityLuganskUkraine
| | - Sasha Batheja
- Department of Internal MedicineGovernment Medical CollegePatialaPunjabIndia
| | - Toluwalase Awoyemi
- Department of Internal MedicineFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
4
|
M. Odat R, Marsool Marsool MD, Nguyen D, Idrees M, Hussein AM, Ghabally M, A. Yasin J, Hanifa H, Sabet CJ, Dinh NH, Harky A, Jain J, Jain H. Presurgery and postsurgery: advancements in artificial intelligence and machine learning models for enhancing patient management in infective endocarditis. Int J Surg 2024; 110:7202-7214. [PMID: 39051669 PMCID: PMC11573050 DOI: 10.1097/js9.0000000000002003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Infective endocarditis (IE) is a severe infection of the inner lining of the heart, known as the endocardium. It is characterized by a range of symptoms and has a complicated pattern of occurrence, leading to a significant number of deaths. IE poses significant diagnostic and treatment difficulties. This evaluation examines the utilization of artificial intelligence (AI) and machine learning (ML) models in addressing IE management. It focuses on the most recent advancements and possible applications. Through this paper, the authors observe that AI/ML can significantly enhance and outperform traditional diagnostic methods leading to more accurate risk stratification, personalized therapies, as well and real-time monitoring facilities. For example, early postsurgical mortality prediction models like SYSUPMIE achieved 'very good' area under the curve (AUROC) values exceeding 0.81. Additionally, AI/ML has improved diagnostic accuracy for prosthetic valve endocarditis, with PET-ML models increasing sensitivity from 59 to 72% when integrated into ESC criteria and reaching a high specificity of 83%. Furthermore, inflammatory biomarkers such as IL-15 and CCL4 have been identified as predictive markers, showing 91% accuracy in forecasting mortality, and identifying high-risk patients with specific CRP, IL-15, and CCL4 levels. Even simpler ML models, like Naïve Bayes, demonstrated an excellent accuracy of 92.30% in death rate prediction following valvular surgery for IE patients. Furthermore, this review provides a vital assessment of the advantages and disadvantages of such AI/ML models, such as better-quality decision support approaches like adaptive response systems on one hand, and data privacy threats or ethical concerns on the other hand. In conclusion, Al and ML must continue, through multicentric and validated research, to advance cardiovascular medicine, and overcome implementation challenges to boost patient outcomes and healthcare delivery.
Collapse
Affiliation(s)
- Ramez M. Odat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid
| | | | - Dang Nguyen
- Massachusetts General Hospital, Corrigan Minehan Heart Center, Harvard Medical School, Boston, Massachusetts
| | | | | | - Mike Ghabally
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Aleppo, Aleppo
| | - Jehad A. Yasin
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Hamdah Hanifa
- Faculty of Medicine, University of Kalamoon, Al-Nabk, Syria
| | | | - Nguyen H. Dinh
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Amer Harky
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Jyoti Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
5
|
Mooghali M, Stroud AM, Yoo DW, Barry BA, Grimshaw AA, Ross JS, Zhu X, Miller JE. Trustworthy and ethical AI-enabled cardiovascular care: a rapid review. BMC Med Inform Decis Mak 2024; 24:247. [PMID: 39232725 PMCID: PMC11373417 DOI: 10.1186/s12911-024-02653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) is increasingly used for prevention, diagnosis, monitoring, and treatment of cardiovascular diseases. Despite the potential for AI to improve care, ethical concerns and mistrust in AI-enabled healthcare exist among the public and medical community. Given the rapid and transformative recent growth of AI in cardiovascular care, to inform practice guidelines and regulatory policies that facilitate ethical and trustworthy use of AI in medicine, we conducted a literature review to identify key ethical and trust barriers and facilitators from patients' and healthcare providers' perspectives when using AI in cardiovascular care. METHODS In this rapid literature review, we searched six bibliographic databases to identify publications discussing transparency, trust, or ethical concerns (outcomes of interest) associated with AI-based medical devices (interventions of interest) in the context of cardiovascular care from patients', caregivers', or healthcare providers' perspectives. The search was completed on May 24, 2022 and was not limited by date or study design. RESULTS After reviewing 7,925 papers from six databases and 3,603 papers identified through citation chasing, 145 articles were included. Key ethical concerns included privacy, security, or confidentiality issues (n = 59, 40.7%); risk of healthcare inequity or disparity (n = 36, 24.8%); risk of patient harm (n = 24, 16.6%); accountability and responsibility concerns (n = 19, 13.1%); problematic informed consent and potential loss of patient autonomy (n = 17, 11.7%); and issues related to data ownership (n = 11, 7.6%). Major trust barriers included data privacy and security concerns, potential risk of patient harm, perceived lack of transparency about AI-enabled medical devices, concerns about AI replacing human aspects of care, concerns about prioritizing profits over patients' interests, and lack of robust evidence related to the accuracy and limitations of AI-based medical devices. Ethical and trust facilitators included ensuring data privacy and data validation, conducting clinical trials in diverse cohorts, providing appropriate training and resources to patients and healthcare providers and improving their engagement in different phases of AI implementation, and establishing further regulatory oversights. CONCLUSION This review revealed key ethical concerns and barriers and facilitators of trust in AI-enabled medical devices from patients' and healthcare providers' perspectives. Successful integration of AI into cardiovascular care necessitates implementation of mitigation strategies. These strategies should focus on enhanced regulatory oversight on the use of patient data and promoting transparency around the use of AI in patient care.
Collapse
Affiliation(s)
- Maryam Mooghali
- Section of General Internal Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Outcomes Research and Evaluation (CORE), 195 Church Street, New Haven, CT, 06510, USA.
| | - Austin M Stroud
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN, USA
| | - Dong Whi Yoo
- School of Information, Kent State University, Kent, OH, USA
| | - Barbara A Barry
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
- Division of Health Care Delivery Research, Mayo Clinic, Rochester, MN, USA
| | - Alyssa A Grimshaw
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT, USA
| | - Joseph S Ross
- Section of General Internal Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Xuan Zhu
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Jennifer E Miller
- Section of General Internal Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Reza-Soltani S, Fakhare Alam L, Debellotte O, Monga TS, Coyalkar VR, Tarnate VCA, Ozoalor CU, Allam SR, Afzal M, Shah GK, Rai M. The Role of Artificial Intelligence and Machine Learning in Cardiovascular Imaging and Diagnosis. Cureus 2024; 16:e68472. [PMID: 39360044 PMCID: PMC11446464 DOI: 10.7759/cureus.68472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of global mortality, underscoring the critical need for accurate and timely diagnosis. This narrative review examines the current applications and future potential of artificial intelligence (AI) and machine learning (ML) in cardiovascular imaging. We discuss the integration of these technologies across various imaging modalities, including echocardiography, computed tomography, magnetic resonance imaging, and nuclear imaging techniques. The review explores AI-assisted diagnosis in key areas such as coronary artery disease detection, valve disorders assessment, cardiomyopathy classification, arrhythmia detection, and prediction of cardiovascular events. AI demonstrates promise in improving diagnostic accuracy, efficiency, and personalized care. However, significant challenges persist, including data quality standardization, model interpretability, regulatory considerations, and clinical workflow integration. We also address the limitations of current AI applications and the ethical implications of their implementation in clinical practice. Future directions point towards advanced AI architectures, multimodal imaging integration, and applications in precision medicine and population health management. The review emphasizes the need for ongoing collaboration between clinicians, data scientists, and policymakers to realize the full potential of AI in cardiovascular imaging while ensuring ethical and equitable implementation. As the field continues to evolve, addressing these challenges will be crucial for the successful integration of AI technologies into cardiovascular care, potentially revolutionizing diagnostic capabilities and improving patient outcomes.
Collapse
Affiliation(s)
- Setareh Reza-Soltani
- Advanced Diagnostic & Interventional Radiology Center (ADIR), Tehran University of Medical Sciences, Tehran, IRN
| | | | - Omofolarin Debellotte
- Internal Medicine, One Brooklyn Health-Brookdale Hospital Medical Center, Brooklyn, USA
| | - Tejbir S Monga
- Internal Medicine, Spartan Health Sciences University, Vieux Fort, LCA
| | | | | | | | | | - Maham Afzal
- Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | | | - Manju Rai
- Biotechnology, Shri Venkateshwara University, Gajraula, IND
| |
Collapse
|
7
|
Zhang J, Fang J, Xu Y, Si G. How AI and Robotics Will Advance Interventional Radiology: Narrative Review and Future Perspectives. Diagnostics (Basel) 2024; 14:1393. [PMID: 39001283 PMCID: PMC11241154 DOI: 10.3390/diagnostics14131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The rapid advancement of artificial intelligence (AI) and robotics has led to significant progress in various medical fields including interventional radiology (IR). This review focuses on the research progress and applications of AI and robotics in IR, including deep learning (DL), machine learning (ML), and convolutional neural networks (CNNs) across specialties such as oncology, neurology, and cardiology, aiming to explore potential directions in future interventional treatments. To ensure the breadth and depth of this review, we implemented a systematic literature search strategy, selecting research published within the last five years. We conducted searches in databases such as PubMed and Google Scholar to find relevant literature. Special emphasis was placed on selecting large-scale studies to ensure the comprehensiveness and reliability of the results. This review summarizes the latest research directions and developments, ultimately analyzing their corresponding potential and limitations. It furnishes essential information and insights for researchers, clinicians, and policymakers, potentially propelling advancements and innovations within the domains of AI and IR. Finally, our findings indicate that although AI and robotics technologies are not yet widely applied in clinical settings, they are evolving across multiple aspects and are expected to significantly improve the processes and efficacy of interventional treatments.
Collapse
Affiliation(s)
- Jiaming Zhang
- Department of Radiology, Clinical Medical College, Southwest Medical University, Luzhou 646699, China; (J.Z.); (J.F.)
| | - Jiayi Fang
- Department of Radiology, Clinical Medical College, Southwest Medical University, Luzhou 646699, China; (J.Z.); (J.F.)
| | - Yanneng Xu
- Department of Radiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646699, China;
| | - Guangyan Si
- Department of Radiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646699, China;
| |
Collapse
|
8
|
Esmaeilzadeh P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artif Intell Med 2024; 151:102861. [PMID: 38555850 DOI: 10.1016/j.artmed.2024.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Healthcare organizations have realized that Artificial intelligence (AI) can provide a competitive edge through personalized patient experiences, improved patient outcomes, early diagnosis, augmented clinician capabilities, enhanced operational efficiencies, or improved medical service accessibility. However, deploying AI-driven tools in the healthcare ecosystem could be challenging. This paper categorizes AI applications in healthcare and comprehensively examines the challenges associated with deploying AI in medical practices at scale. As AI continues to make strides in healthcare, its integration presents various challenges, including production timelines, trust generation, privacy concerns, algorithmic biases, and data scarcity. The paper highlights that flawed business models and wrong workflows in healthcare practices cannot be rectified merely by deploying AI-driven tools. Healthcare organizations should re-evaluate root problems such as misaligned financial incentives (e.g., fee-for-service models), dysfunctional medical workflows (e.g., high rates of patient readmissions), poor care coordination between different providers, fragmented electronic health records systems, and inadequate patient education and engagement models in tandem with AI adoption. This study also explores the need for a cultural shift in viewing AI not as a threat but as an enabler that can enhance healthcare delivery and create new employment opportunities while emphasizing the importance of addressing underlying operational issues. The necessity of investments beyond finance is discussed, emphasizing the importance of human capital, continuous learning, and a supportive environment for AI integration. The paper also highlights the crucial role of clear regulations in building trust, ensuring safety, and guiding the ethical use of AI, calling for coherent frameworks addressing transparency, model accuracy, data quality control, liability, and ethics. Furthermore, this paper underscores the importance of advancing AI literacy within academia to prepare future healthcare professionals for an AI-driven landscape. Through careful navigation and proactive measures addressing these challenges, the healthcare community can harness AI's transformative power responsibly and effectively, revolutionizing healthcare delivery and patient care. The paper concludes with a vision and strategic suggestions for the future of healthcare with AI, emphasizing thoughtful, responsible, and innovative engagement as the pathway to realizing its full potential to unlock immense benefits for healthcare organizations, physicians, nurses, and patients while proactively mitigating risks.
Collapse
Affiliation(s)
- Pouyan Esmaeilzadeh
- Department of Information Systems and Business Analytics, College of Business, Florida International University (FIU), Modesto A. Maidique Campus, 11200 S.W. 8th St, RB 261B, Miami, FL 33199, United States.
| |
Collapse
|
9
|
Palermi S, Vecchiato M, Saglietto A, Niederseer D, Oxborough D, Ortega-Martorell S, Olier I, Castelletti S, Baggish A, Maffessanti F, Biffi A, D'Andrea A, Zorzi A, Cavarretta E, D'Ascenzi F. Unlocking the potential of artificial intelligence in sports cardiology: does it have a role in evaluating athlete's heart? Eur J Prev Cardiol 2024; 31:470-482. [PMID: 38198776 DOI: 10.1093/eurjpc/zwae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The integration of artificial intelligence (AI) technologies is evolving in different fields of cardiology and in particular in sports cardiology. Artificial intelligence offers significant opportunities to enhance risk assessment, diagnosis, treatment planning, and monitoring of athletes. This article explores the application of AI in various aspects of sports cardiology, including imaging techniques, genetic testing, and wearable devices. The use of machine learning and deep neural networks enables improved analysis and interpretation of complex datasets. However, ethical and legal dilemmas must be addressed, including informed consent, algorithmic fairness, data privacy, and intellectual property issues. The integration of AI technologies should complement the expertise of physicians, allowing for a balanced approach that optimizes patient care and outcomes. Ongoing research and collaborations are vital to harness the full potential of AI in sports cardiology and advance our management of cardiovascular health in athletes.
Collapse
Affiliation(s)
- Stefano Palermi
- Public Health Department, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| | - Marco Vecchiato
- Sports and Exercise Medicine Division, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Andrea Saglietto
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Citta della Salute e della Scienza' Hospital, 10129 Turin, Italy
- Department of Medical Sciences, University of Turin, 10129 Turin, Italy
| | - David Niederseer
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - David Oxborough
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sandra Ortega-Martorell
- Data Science Research Centre, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Ivan Olier
- Data Science Research Centre, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Silvia Castelletti
- Cardiology Department, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Aaron Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Alessandro Biffi
- Med-Ex, Medicine & Exercise, Medical Partner Scuderia Ferrari, 00187 Rome, Italy
| | - Antonello D'Andrea
- Department of Cardiology, Umberto I Hospital, 84014 Nocera Inferiore, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Flavio D'Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy
| |
Collapse
|
10
|
Wang X, Pu J. Recent Advances in Cardiac Magnetic Resonance for Imaging of Acute Myocardial Infarction. SMALL METHODS 2024; 8:e2301170. [PMID: 37992241 DOI: 10.1002/smtd.202301170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Indexed: 11/24/2023]
Abstract
Acute myocardial infarction (AMI) is one of the primary causes of death worldwide, with a high incidence and mortality rate. Assessment of the infarcted and surviving myocardium, along with microvascular obstruction, is crucial for risk stratification, treatment, and prognosis in patients with AMI. Nonionizing radiation, excellent soft tissue contrast resolution, a large field of view, and multiplane imaging make cardiac magnetic resonance (CMR) a "one-stop" method for assessing cardiac structure, function, perfusion, and metabolism. Hence, this imaging technology is considered the "gold standard" for evaluating myocardial function and viability in AMI. This review critically compares the advantages and disadvantages of CMR with other cardiac imaging technologies, and relates the imaging findings to the underlying pathophysiological processes in AMI. A more thorough understanding of CMR technology will clarify their advanced clinical diagnosis and prognostic assessment applications, and assess the future approaches and challenges of CMR in the setting of AMI.
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Jiao Tong University, School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Jun Pu
- Shanghai Jiao Tong University, School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| |
Collapse
|
11
|
Cau R, Pisu F, Suri JS, Montisci R, Gatti M, Mannelli L, Gong X, Saba L. Artificial Intelligence in the Differential Diagnosis of Cardiomyopathy Phenotypes. Diagnostics (Basel) 2024; 14:156. [PMID: 38248033 PMCID: PMC11154548 DOI: 10.3390/diagnostics14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Artificial intelligence (AI) is rapidly being applied to the medical field, especially in the cardiovascular domain. AI approaches have demonstrated their applicability in the detection, diagnosis, and management of several cardiovascular diseases, enhancing disease stratification and typing. Cardiomyopathies are a leading cause of heart failure and life-threatening ventricular arrhythmias. Identifying the etiologies is fundamental for the management and diagnostic pathway of these heart muscle diseases, requiring the integration of various data, including personal and family history, clinical examination, electrocardiography, and laboratory investigations, as well as multimodality imaging, making the clinical diagnosis challenging. In this scenario, AI has demonstrated its capability to capture subtle connections from a multitude of multiparametric datasets, enabling the discovery of hidden relationships in data and handling more complex tasks than traditional methods. This review aims to present a comprehensive overview of the main concepts related to AI and its subset. Additionally, we review the existing literature on AI-based models in the differential diagnosis of cardiomyopathy phenotypes, and we finally examine the advantages and limitations of these AI approaches.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato s.s. 554 Monserrato, 09045 Cagliari, Italy; (R.C.); (F.P.)
| | - Francesco Pisu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato s.s. 554 Monserrato, 09045 Cagliari, Italy; (R.C.); (F.P.)
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoin™, Roseville, CA 95661, USA;
| | - Roberta Montisci
- Department of Cardiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato s.s. 554 Monserrato, 09045 Cagliari, Italy;
| | - Marco Gatti
- Department of Radiology, Università degli Studi di Torino, 10129 Turin, Italy;
| | | | - Xiangyang Gong
- Radiology Department, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato s.s. 554 Monserrato, 09045 Cagliari, Italy; (R.C.); (F.P.)
| |
Collapse
|
12
|
Cau R, Pisu F, Muscogiuri G, Mannelli L, Suri JS, Saba L. Applications of artificial intelligence-based models in vulnerable carotid plaque. VESSEL PLUS 2023. [DOI: 10.20517/2574-1209.2023.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Carotid atherosclerotic disease is a widely acknowledged risk factor for ischemic stroke, making it a major concern on a global scale. To alleviate the socio-economic impact of carotid atherosclerotic disease, crucial objectives include prioritizing prevention efforts and early detection. So far, the degree of carotid stenosis has been regarded as the primary parameter for risk assessment and determining appropriate therapeutic interventions. Histopathological and imaging-based studies demonstrated important differences in the risk of cardiovascular events given a similar degree of luminal stenosis, identifying plaque structure and composition as key determinants of either plaque vulnerability or stability. The application of Artificial Intelligence (AI)-based techniques to carotid imaging can offer several solutions for tissue characterization and classification. This review aims to present a comprehensive overview of the main concepts related to AI. Additionally, we review the existing literature on AI-based models in ultrasound (US), computed tomography (CT), and Magnetic Resonance Imaging (MRI) for vulnerable plaque detection, and we finally examine the advantages and limitations of these AI approaches.
Collapse
|
13
|
Dey D, Arnaout R, Antani S, Badano A, Jacques L, Li H, Leiner T, Margerrison E, Samala R, Sengupta PP, Shah SJ, Slomka P, Williams MC, Bandettini WP, Sachdev V. Proceedings of the NHLBI Workshop on Artificial Intelligence in Cardiovascular Imaging: Translation to Patient Care. JACC Cardiovasc Imaging 2023; 16:1209-1223. [PMID: 37480904 PMCID: PMC10524663 DOI: 10.1016/j.jcmg.2023.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 07/24/2023]
Abstract
Artificial intelligence (AI) promises to revolutionize many fields, but its clinical implementation in cardiovascular imaging is still rare despite increasing research. We sought to facilitate discussion across several fields and across the lifecycle of research, development, validation, and implementation to identify challenges and opportunities to further translation of AI in cardiovascular imaging. Furthermore, it seemed apparent that a multidisciplinary effort across institutions would be essential to overcome these challenges. This paper summarizes the proceedings of the National Heart, Lung, and Blood Institute-led workshop, creating consensus around needs and opportunities for institutions at several levels to support and advance research in this field and support future translation.
Collapse
Affiliation(s)
- Damini Dey
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rima Arnaout
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA.
| | - Sameer Antani
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Aldo Badano
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Huiqing Li
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Edward Margerrison
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ravi Samala
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Sanjiv J Shah
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Piotr Slomka
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michelle C Williams
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; British Heart Foundation Data Science Centre, London, United Kingdom
| | - W Patricia Bandettini
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vandana Sachdev
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Cau R, Pisu F, Suri JS, Mannelli L, Scaglione M, Masala S, Saba L. Artificial Intelligence Applications in Cardiovascular Magnetic Resonance Imaging: Are We on the Path to Avoiding the Administration of Contrast Media? Diagnostics (Basel) 2023; 13:2061. [PMID: 37370956 PMCID: PMC10297403 DOI: 10.3390/diagnostics13122061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, cardiovascular imaging examinations have experienced exponential growth due to technological innovation, and this trend is consistent with the most recent chest pain guidelines. Contrast media have a crucial role in cardiovascular magnetic resonance (CMR) imaging, allowing for more precise characterization of different cardiovascular diseases. However, contrast media have contraindications and side effects that limit their clinical application in determinant patients. The application of artificial intelligence (AI)-based techniques to CMR imaging has led to the development of non-contrast models. These AI models utilize non-contrast imaging data, either independently or in combination with clinical and demographic data, as input to generate diagnostic or prognostic algorithms. In this review, we provide an overview of the main concepts pertaining to AI, review the existing literature on non-contrast AI models in CMR, and finally, discuss the strengths and limitations of these AI models and their possible future development.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato, Italy; (R.C.); (F.P.)
| | - Francesco Pisu
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato, Italy; (R.C.); (F.P.)
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA;
| | | | - Mariano Scaglione
- Department of Radiology, University Hospital of Sassari, 07100 Sassari, Italy; (M.S.); (S.M.)
| | - Salvatore Masala
- Department of Radiology, University Hospital of Sassari, 07100 Sassari, Italy; (M.S.); (S.M.)
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato, Italy; (R.C.); (F.P.)
| |
Collapse
|
15
|
Nittas V, Daniore P, Landers C, Gille F, Amann J, Hubbs S, Puhan MA, Vayena E, Blasimme A. Beyond high hopes: A scoping review of the 2019-2021 scientific discourse on machine learning in medical imaging. PLOS DIGITAL HEALTH 2023; 2:e0000189. [PMID: 36812620 PMCID: PMC9931290 DOI: 10.1371/journal.pdig.0000189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023]
Abstract
Machine learning has become a key driver of the digital health revolution. That comes with a fair share of high hopes and hype. We conducted a scoping review on machine learning in medical imaging, providing a comprehensive outlook of the field's potential, limitations, and future directions. Most reported strengths and promises included: improved (a) analytic power, (b) efficiency (c) decision making, and (d) equity. Most reported challenges included: (a) structural barriers and imaging heterogeneity, (b) scarcity of well-annotated, representative and interconnected imaging datasets (c) validity and performance limitations, including bias and equity issues, and (d) the still missing clinical integration. The boundaries between strengths and challenges, with cross-cutting ethical and regulatory implications, remain blurred. The literature emphasizes explainability and trustworthiness, with a largely missing discussion about the specific technical and regulatory challenges surrounding these concepts. Future trends are expected to shift towards multi-source models, combining imaging with an array of other data, in a more open access, and explainable manner.
Collapse
Affiliation(s)
- Vasileios Nittas
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, Faculty of Medicine, Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Paola Daniore
- Institute for Implementation Science in Health Care, Faculty of Medicine, University of Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Switzerland
| | - Constantin Landers
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Felix Gille
- Institute for Implementation Science in Health Care, Faculty of Medicine, University of Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Switzerland
| | - Julia Amann
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Shannon Hubbs
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Milo Alan Puhan
- Epidemiology, Biostatistics and Prevention Institute, Faculty of Medicine, Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Effy Vayena
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Alessandro Blasimme
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
16
|
Abdulkareem M, Brahier MS, Zou F, Rauseo E, Uchegbu I, Taylor A, Thomaides A, Bergquist PJ, Srichai MB, Lee AM, Vargas JD, Petersen SE. Quantification of Epicardial Adipose Tissue Volume and Attenuation for Cardiac CT Scans Using Deep Learning in a Single Multi-Task Framework. Rev Cardiovasc Med 2022; 23:412. [PMID: 39076659 PMCID: PMC11270472 DOI: 10.31083/j.rcm2312412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 07/31/2024] Open
Abstract
Background Recent studies have shown that epicardial adipose tissue (EAT) is an independent atrial fibrillation (AF) prognostic marker and has influence on the myocardial function. In computed tomography (CT), EAT volume (EATv) and density (EATd) are parameters that are often used to quantify EAT. While increased EATv has been found to correlate with the prevalence and the recurrence of AF after ablation therapy, higher EATd correlates with inflammation due to arrest of lipid maturation and with high risk of plaque presence and plaque progression. Automation of the quantification task diminishes the variability in readings introduced by different observers in manual quantification and results in high reproducibility of studies and less time-consuming analysis. Our objective is to develop a fully automated quantification of EATv and EATd using a deep learning (DL) framework. Methods We proposed a framework that consists of image classification and segmentation DL models and performs the task of selecting images with EAT from all the CT images acquired for a patient, and the task of segmenting the EAT from the output images of the preceding task. EATv and EATd are estimated using the segmentation masks to define the region of interest. For our experiments, a 300-patient dataset was divided into two subsets, each consisting of 150 patients: Dataset 1 (41,979 CT slices) for training the DL models, and Dataset 2 (36,428 CT slices) for evaluating the quantification of EATv and EATd. Results The classification model achieved accuracies of 98% for precision, recall and F 1 scores, and the segmentation model achieved accuracies in terms of mean ( ± std.) and median dice similarity coefficient scores of 0.844 ( ± 0.19) and 0.84, respectively. Using the evaluation set (Dataset 2), our approach resulted in a Pearson correlation coefficient of 0.971 ( R 2 = 0.943) between the label and predicted EATv, and the correlation coefficient of 0.972 ( R 2 = 0.945) between the label and predicted EATd. Conclusions We proposed a framework that provides a fast and robust strategy for accurate EAT segmentation, and volume (EATv) and attenuation (EATd) quantification tasks. The framework will be useful to clinicians and other practitioners for carrying out reproducible EAT quantification at patient level or for large cohorts and high-throughput projects.
Collapse
Affiliation(s)
- Musa Abdulkareem
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, EC1A 4NP London, UK
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, E1 4NS London, UK
- Health Data Research UK, NW1 2BE London, UK
| | - Mark S. Brahier
- Georgetown University School of Medicine, Washington, DC 20007, USA
- Duke University Hospital, Durham, North Carolina, NC 27710, USA
| | - Fengwei Zou
- Montefiore Medical Centre, Bronx, NY 10467, USA
| | - Elisa Rauseo
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, EC1A 4NP London, UK
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, E1 4NS London, UK
| | - Ijeoma Uchegbu
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, EC1A 4NP London, UK
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, E1 4NS London, UK
| | | | | | | | | | - Aaron M. Lee
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, EC1A 4NP London, UK
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, E1 4NS London, UK
| | - Jose D. Vargas
- Georgetown University School of Medicine, Washington, DC 20007, USA
- Veterans Affairs Medical Center, Washington, DC 20422, USA
| | - Steffen E Petersen
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, EC1A 4NP London, UK
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, E1 4NS London, UK
- Health Data Research UK, NW1 2BE London, UK
- The Alan Turing Institute, NW1 2BE London, UK
| |
Collapse
|
17
|
Wellnhofer E. Real-World and Regulatory Perspectives of Artificial Intelligence in Cardiovascular Imaging. Front Cardiovasc Med 2022; 9:890809. [PMID: 35935648 PMCID: PMC9354141 DOI: 10.3389/fcvm.2022.890809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Recent progress in digital health data recording, advances in computing power, and methodological approaches that extract information from data as artificial intelligence are expected to have a disruptive impact on technology in medicine. One of the potential benefits is the ability to extract new and essential insights from the vast amount of data generated during health care delivery every day. Cardiovascular imaging is boosted by new intelligent automatic methods to manage, process, segment, and analyze petabytes of image data exceeding historical manual capacities. Algorithms that learn from data raise new challenges for regulatory bodies. Partially autonomous behavior and adaptive modifications and a lack of transparency in deriving evidence from complex data pose considerable problems. Controlling new technologies requires new controlling techniques and ongoing regulatory research. All stakeholders must participate in the quest to find a fair balance between innovation and regulation. The regulatory approach to artificial intelligence must be risk-based and resilient. A focus on unknown emerging risks demands continuous surveillance and clinical evaluation during the total product life cycle. Since learning algorithms are data-driven, high-quality data is fundamental for good machine learning practice. Mining, processing, validation, governance, and data control must account for bias, error, inappropriate use, drifts, and shifts, particularly in real-world data. Regulators worldwide are tackling twenty-first century challenges raised by "learning" medical devices. Ethical concerns and regulatory approaches are presented. The paper concludes with a discussion on the future of responsible artificial intelligence.
Collapse
Affiliation(s)
- Ernst Wellnhofer
- Institute of Computer-Assisted Cardiovascular Medicine, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
18
|
Rios R, Miller RJH, Manral N, Sharir T, Einstein AJ, Fish MB, Ruddy TD, Kaufmann PA, Sinusas AJ, Miller EJ, Bateman TM, Dorbala S, Di Carli M, Van Kriekinge SD, Kavanagh PB, Parekh T, Liang JX, Dey D, Berman DS, Slomka PJ. Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: Insights from REFINE SPECT registry. Comput Biol Med 2022; 145:105449. [PMID: 35381453 PMCID: PMC9117456 DOI: 10.1016/j.compbiomed.2022.105449] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Machine learning (ML) models can improve prediction of major adverse cardiovascular events (MACE), but in clinical practice some values may be missing. We evaluated the influence of missing values in ML models for patient-specific prediction of MACE risk. METHODS We included 20,179 patients from the multicenter REFINE SPECT registry with MACE follow-up data. We evaluated seven methods for handling missing values: 1) removal of variables with missing values (ML-Remove), 2) imputation with median and unique category for continuous and categorical variables, respectively (ML-Traditional), 3) unique category for missing variables (ML-Unique), 4) cluster-based imputation (ML-Cluster), 5) regression-based imputation (ML-Regression), 6) missRanger imputation (ML-MR), and 7) multiple imputation (ML-MICE). We trained ML models with full data and simulated missing values in testing patients. Prediction performance was evaluated using area under the receiver-operating characteristic curve (AUC) and compared with a model without missing values (ML-All), expert visual diagnosis and total perfusion deficit (TPD). RESULTS During mean follow-up of 4.7 ± 1.5 years, 3,541 patients experienced at least one MACE (3.7% annualized risk). ML-All (reference model-no missing values) had AUC 0.799 for MACE risk prediction. All seven models with missing values had lower AUC (ML-Remove: 0.778, ML-MICE: 0.774, ML-Cluster: 0.771, ML-Traditional: 0.771, ML-Regression: 0.770, ML-MR: 0.766, and ML-Unique: 0.766; p < 0.01 for ML-Remove vs remaining methods). Stress TPD (AUC 0.698) and visual diagnosis (0.681) had the lowest AUCs. CONCLUSION Missing values reduce the accuracy of ML models when predicting MACE risk. Removing variables with missing values and retraining the model may yield superior patient-level prediction performance.
Collapse
Affiliation(s)
- Richard Rios
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Universidad Nacional de Colombia, Sede de La Paz, GAUNAL, La Paz, Colombia
| | - Robert J H Miller
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | - Nipun Manral
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tali Sharir
- Department of Nuclear Cardiology, Assuta Medical Center, Tel Aviv, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheba, Israel
| | - Andrew J Einstein
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, USA; Department of Radiology, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, USA
| | - Mathews B Fish
- Department of Nuclear Medicine, Oregon Heart and Vascular Institute, Sacred Heart Medical Center, Springfield, OR, USA
| | - Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | - Albert J Sinusas
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Edward J Miller
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Sharmila Dorbala
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marcelo Di Carli
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Serge D Van Kriekinge
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul B Kavanagh
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tejas Parekh
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joanna X Liang
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Berman
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Piotr J Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Recommendations for cardiovascular magnetic resonance and computed tomography in congenital heart disease: a consensus paper from the CMR/CCT working group of the Italian Society of Pediatric Cardiology (SICP) and the Italian College of Cardiac Radiology endorsed by the Italian Society of Medical and Interventional Radiology (SIRM) Part I. Radiol Med 2022; 127:788-802. [PMID: 35608758 PMCID: PMC9308607 DOI: 10.1007/s11547-022-01490-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular magnetic resonance (CMR) and computed tomography (CCT) are advanced imaging modalities that recently revolutionized the conventional diagnostic approach to congenital heart diseases (CHD), supporting echocardiography and often replacing cardiac catheterization. Nevertheless, correct execution and interpretation require in-depth knowledge of all technical and clinical aspects of CHD, a careful assessment of risks and benefits before each exam, proper imaging protocols to maximize diagnostic information, minimizing harm. This position paper, written by experts from the Working Group of the Italian Society of Pediatric Cardiology and from the Italian College of Cardiac Radiology of the Italian Society of Medical and Interventional Radiology, is intended as a practical guide for applying CCT and CMR in children and adults with CHD, wishing to support Radiologists, Pediatricians, Cardiologists and Cardiac Surgeons in the multimodality diagnostic approach to these patients. The first part provides a review of the most relevant literature in the field, describes each modality's advantage and drawback, making considerations on the main applications, image quality, and safety issues. The second part focuses on clinical indications and appropriateness criteria for CMR and CCT, considering the level of CHD complexity, the clinical and logistic setting and the operator expertise.
Collapse
|
20
|
Schuuring MJ, Mischie AN, Caiani EG. Editorial: Digital Solutions in Cardiology. Front Cardiovasc Med 2022; 9:873991. [PMID: 35463763 PMCID: PMC9024208 DOI: 10.3389/fcvm.2022.873991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mark J. Schuuring
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Alexandru N. Mischie
- Centre Hospitalier Montlucon, Department of Cardiology, Montluçon, France
- International Society of Telemedicine and eHealth, Montluçon, France
| | - Enrico G. Caiani
- Politecnico di Milano, Department of Electronics, Information and Biomedical Engineering, Milan, Italy
- National Council of Research, Institute of Electronics, Information and Telecommunication Engineering, Milan, Italy
| |
Collapse
|
21
|
Baliga RR, Itchhaporia D, Bossone E. Digital Transformation in Medicine to Enhance Quality of Life, Longevity, and Health Equity. Heart Fail Clin 2022; 18:xi-xiii. [DOI: 10.1016/j.hfc.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Xue H, Artico J, Davies RH, Adam R, Shetye A, Augusto JB, Bhuva A, Fröjdh F, Wong TC, Fukui M, Cavalcante JL, Treibel TA, Manisty C, Fontana M, Ugander M, Moon JC, Schelbert EB, Kellman P. Automated In-Line Artificial Intelligence Measured Global Longitudinal Shortening and Mitral Annular Plane Systolic Excursion: Reproducibility and Prognostic Significance. J Am Heart Assoc 2022; 11:e023849. [PMID: 35132872 PMCID: PMC9245823 DOI: 10.1161/jaha.121.023849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022]
Abstract
Background Global longitudinal shortening (GL-Shortening) and the mitral annular plane systolic excursion (MAPSE) are known markers in heart failure patients, but measurement may be subjective and less frequently reported because of the lack of automated analysis. Therefore, a validated, automated artificial intelligence (AI) solution can be of strong clinical interest. Methods and Results The model was implemented on cardiac magnetic resonance scanners with automated in-line processing. Reproducibility was evaluated in a scan-rescan data set (n=160 patients). The prognostic association with adverse events (death or hospitalization for heart failure) was evaluated in a large patient cohort (n=1572) and compared with feature tracking global longitudinal strain measured manually by experts. Automated processing took ≈1.1 seconds for a typical case. On the scan-rescan data set, the model exceeded the precision of human expert (coefficient of variation 7.2% versus 11.1% for GL-Shortening, P=0.0024; 6.5% versus 9.1% for MAPSE, P=0.0124). The minimal detectable change at 90% power was 2.53 percentage points for GL-Shortening and 1.84 mm for MAPSE. AI GL-Shortening correlated well with manual global longitudinal strain (R2=0.85). AI MAPSE had the strongest association with outcomes (χ2, 255; hazard ratio [HR], 2.5 [95% CI, 2.2-2.8]), compared with AI GL-Shortening (χ2, 197; HR, 2.1 [95% CI,1.9-2.4]), manual global longitudinal strain (χ2, 192; HR, 2.1 [95% CI, 1.9-2.3]), and left ventricular ejection fraction (χ2, 147; HR, 1.8 [95% CI, 1.6-1.9]), with P<0.001 for all. Conclusions Automated in-line AI-measured MAPSE and GL-Shortening can deliver immediate and highly reproducible results during cardiac magnetic resonance scanning. These results have strong associations with adverse outcomes that exceed those of global longitudinal strain and left ventricular ejection fraction.
Collapse
Affiliation(s)
- Hui Xue
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Jessica Artico
- Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
- University Hospital and University of TriesteTriesteItaly
| | | | - Robert Adam
- Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
| | - Abhishek Shetye
- Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
| | - João B. Augusto
- Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
- University College LondonLondonUnited Kingdom
| | - Anish Bhuva
- Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
| | - Fredrika Fröjdh
- Department of Clinical PhysiologyKarolinska University Hospital, and Karolinska InstituteStockholmSweden
| | - Timothy C. Wong
- UPMC Cardiovascular Magnetic Resonance CenterUPMCPittsburghPA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPA
- Heart and Vascular InstituteUPMCPittsburghPA
- Clinical and Translational Science InstituteUniversity of PittsburghPittsburghPA
| | - Miho Fukui
- Minneapolis Heart InstituteAbbott Northwestern HospitalMinneapolisMN
| | | | | | | | - Marianna Fontana
- University College LondonLondonUnited Kingdom
- Royal Free HospitalNHS TrustLondonUnited Kingdom
| | - Martin Ugander
- Department of Clinical PhysiologyKarolinska University Hospital, and Karolinska InstituteStockholmSweden
- Kolling InstituteRoyal North Shore Hospital, and Charles Perkins CentreFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - James C. Moon
- Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
| | - Erik B. Schelbert
- Minneapolis Heart Institute, United HospitalSt. Paul, Minnesota and Abbott Northwestern HospitalMinneapolisMN
| | - Peter Kellman
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| |
Collapse
|
23
|
Chauhan D, Anyanwu E, Goes J, Besser SA, Anand S, Madduri R, Getty N, Kelle S, Kawaji K, Mor-Avi V, Patel AR. Comparison of machine learning and deep learning for view identification from cardiac magnetic resonance images. Clin Imaging 2022; 82:121-126. [PMID: 34813989 PMCID: PMC8849564 DOI: 10.1016/j.clinimag.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Artificial intelligence is increasingly utilized to aid in the interpretation of cardiac magnetic resonance (CMR) studies. One of the first steps is the identification of the imaging plane depicted, which can be achieved by both deep learning (DL) and classical machine learning (ML) techniques without user input. We aimed to compare the accuracy of ML and DL for CMR view classification and to identify potential pitfalls during training and testing of the algorithms. METHODS To train our DL and ML algorithms, we first established datasets by retrospectively selecting 200 CMR cases. The models were trained using two different cohorts (passively and actively curated) and applied data augmentation to enhance training. Once trained, the models were validated on an external dataset, consisting of 20 cases acquired at another center. We then compared accuracy metrics and applied class activation mapping (CAM) to visualize DL model performance. RESULTS The DL and ML models trained with the passively-curated CMR cohort were 99.1% and 99.3% accurate on the validation set, respectively. However, when tested on the CMR cases with complex anatomy, both models performed poorly. After training and testing our models again on all 200 cases (active cohort), validation on the external dataset resulted in 95% and 90% accuracy, respectively. The CAM analysis depicted heat maps that demonstrated the importance of carefully curating the datasets to be used for training. CONCLUSIONS Both DL and ML models can accurately classify CMR images, but DL outperformed ML when classifying images with complex heart anatomy.
Collapse
Affiliation(s)
- Daksh Chauhan
- University of Chicago, Chicago, IL, United States of America
| | - Emeka Anyanwu
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Jacob Goes
- Illinois Institute of Technology, Chicago, IL, United States of America
| | - Stephanie A Besser
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | | | - Ravi Madduri
- Data Science and Learning Department, Argonne National Laboratory, Lemont, IL, United States of America
| | - Neil Getty
- Illinois Institute of Technology, Chicago, IL, United States of America; Data Science and Learning Department, Argonne National Laboratory, Lemont, IL, United States of America
| | - Sebastian Kelle
- Department of Internal Medicine/Cardiology German Heart Center, Berlin, Germany
| | - Keigo Kawaji
- Illinois Institute of Technology, Chicago, IL, United States of America
| | - Victor Mor-Avi
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Amit R Patel
- Department of Medicine, University of Chicago, Chicago, IL, United States of America; Department of Radiology, University of Chicago, Chicago, IL, United States of America.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Artificial intelligence is the ability for machines to perform intelligent tasks. Artificial intelligence is already penetrating many aspects of medicine including cardiac surgery. Here, we offer a platform introduction to artificial intelligence for cardiac surgeons to understand the implementations of this transformative tool. RECENT FINDINGS Artificial intelligence has contributed greatly to the automation of cardiac imaging, including echocardiography, cardiac computed tomography, cardiac MRI and most recently, in radiomics. There are also several artificial intelligence based clinical prediction tools that predict complex outcomes after cardiac surgery. Waveform analysis, specifically, automated electrocardiogram analysis, has seen significant strides with promise in wearables and remote monitoring. Experimentally, artificial intelligence has also entered the operating room in the form of augmented reality and automated robotic surgery. SUMMARY Artificial intelligence has many potential exciting applications in cardiac surgery. It can streamline physician workload and help make medicine more human again by placing the physician back at the bedside. Here, we offer cardiac surgeons an introduction to this transformative tool so that they may actively participate in creating clinically relevant implementations to improve our practice.
Collapse
|
25
|
Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J 2021; 42:3904-3916. [PMID: 34392353 PMCID: PMC8497074 DOI: 10.1093/eurheartj/ehab544] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/06/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
The field of cardiac electrophysiology (EP) had adopted simple artificial intelligence (AI) methodologies for decades. Recent renewed interest in deep learning techniques has opened new frontiers in electrocardiography analysis including signature identification of diseased states. Artificial intelligence advances coupled with simultaneous rapid growth in computational power, sensor technology, and availability of web-based platforms have seen the rapid growth of AI-aided applications and big data research. Changing lifestyles with an expansion of the concept of internet of things and advancements in telecommunication technology have opened doors to population-based detection of atrial fibrillation in ways, which were previously unimaginable. Artificial intelligence-aided advances in 3D cardiac imaging heralded the concept of virtual hearts and the simulation of cardiac arrhythmias. Robotics, completely non-invasive ablation therapy, and the concept of extended realities show promise to revolutionize the future of EP. In this review, we discuss the impact of AI and recent technological advances in all aspects of arrhythmia care.
Collapse
Affiliation(s)
- Venkat D Nagarajan
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,Department of Cardiology, Doncaster and Bassetlaw Hospitals, NHS Foundation Trust, Thorne Road, Doncaster DN2 5LT, UK
| | - Su-Lin Lee
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), UCL, Foley Street, London W1W 7TS, UK
| | - Jan-Lukas Robertus
- Department of Pathology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Christoph A Nienaber
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Charles Street, Baltimore, MD 21218, USA
| | - Sabine Ernst
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
26
|
Abstract
Rapid development of artificial intelligence (AI) is gaining grounds in medicine. Its huge impact and inevitable necessity are also reflected in cardiovascular imaging. Although AI would probably never replace doctors, it can significantly support and improve their productivity and diagnostic performance. Many algorithms have already proven useful at all stages of the cardiac imaging chain. Their crucial practical applications include classification, automatic quantification, notification, diagnosis, and risk prediction. Consequently, more reproducible and repeatable studies are obtained, and personalized reports may be available to any patient. Utilization of AI also increases patient safety and decreases healthcare costs. Furthermore, AI is particularly useful for beginners in the field of cardiac imaging as it provides anatomic guidance and interpretation of complex imaging results. In contrast, lack of interpretability and explainability in AI carries a risk of harmful recommendations. This review was aimed at summarizing AI principles, essential execution requirements, and challenges as well as its recent applications in cardiovascular imaging.
Collapse
|
27
|
Galkin F, Mamoshina P, Kochetov K, Sidorenko D, Zhavoronkov A. DeepMAge: A Methylation Aging Clock Developed with Deep Learning. Aging Dis 2021; 12:1252-1262. [PMID: 34341706 PMCID: PMC8279523 DOI: 10.14336/ad.2020.1202] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
DNA methylation aging clocks have become an invaluable tool in biogerontology research since their inception in 2013. Today, a variety of machine learning approaches have been tested for the purpose of predicting human age based on molecular-level features. Among these, deep learning, or neural networks, is an especially promising approach that has been used to construct accurate clocks using blood biochemistry, transcriptomics, and microbiomics data-feats unachieved by other algorithms. In this article, we explore how deep learning performs in a DNA methylation setting and compare it to the current industry standard-the 353 CpG clock published in 2013. The aging clock we are presenting (DeepMAge) is a neural network regressor trained on 4,930 blood DNA methylation profiles from 17 studies. Its absolute median error was 2.77 years in an independent verification set of 1,293 samples from 15 studies. DeepMAge shows biological relevance by assigning a higher predicted age to people with various health-related conditions, such as ovarian cancer, irritable bowel diseases, and multiple sclerosis.
Collapse
Affiliation(s)
- Fedor Galkin
- Deep Longevity Limited, Hong Kong.
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| | | | | | - Denis Sidorenko
- Insilico Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong.
| | - Alex Zhavoronkov
- Deep Longevity Limited, Hong Kong.
- Insilico Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong.
- Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
28
|
Sermesant M, Delingette H, Cochet H, Jaïs P, Ayache N. Applications of artificial intelligence in cardiovascular imaging. Nat Rev Cardiol 2021; 18:600-609. [PMID: 33712806 DOI: 10.1038/s41569-021-00527-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
Research into artificial intelligence (AI) has made tremendous progress over the past decade. In particular, the AI-powered analysis of images and signals has reached human-level performance in many applications owing to the efficiency of modern machine learning methods, in particular deep learning using convolutional neural networks. Research into the application of AI to medical imaging is now very active, especially in the field of cardiovascular imaging because of the challenges associated with acquiring and analysing images of this dynamic organ. In this Review, we discuss the clinical questions in cardiovascular imaging that AI can be used to address and the principal methodological AI approaches that have been developed to solve the related image analysis problems. Some approaches are purely data-driven and rely mainly on statistical associations, whereas others integrate anatomical and physiological information through additional statistical, geometric and biophysical models of the human heart. In a structured manner, we provide representative examples of each of these approaches, with particular attention to the underlying computational imaging challenges. Finally, we discuss the remaining limitations of AI approaches in cardiovascular imaging (such as generalizability and explainability) and how they can be overcome.
Collapse
Affiliation(s)
| | | | - Hubert Cochet
- IHU Liryc, CHU Bordeaux, Université Bordeaux, Inserm 1045, Pessac, France
| | - Pierre Jaïs
- IHU Liryc, CHU Bordeaux, Université Bordeaux, Inserm 1045, Pessac, France
| | | |
Collapse
|
29
|
Abdulkareem M, Petersen SE. The Promise of AI in Detection, Diagnosis, and Epidemiology for Combating COVID-19: Beyond the Hype. Front Artif Intell 2021; 4:652669. [PMID: 34056579 PMCID: PMC8160471 DOI: 10.3389/frai.2021.652669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 has created enormous suffering, affecting lives, and causing deaths. The ease with which this type of coronavirus can spread has exposed weaknesses of many healthcare systems around the world. Since its emergence, many governments, research communities, commercial enterprises, and other institutions and stakeholders around the world have been fighting in various ways to curb the spread of the disease. Science and technology have helped in the implementation of policies of many governments that are directed toward mitigating the impacts of the pandemic and in diagnosing and providing care for the disease. Recent technological tools, artificial intelligence (AI) tools in particular, have also been explored to track the spread of the coronavirus, identify patients with high mortality risk and diagnose patients for the disease. In this paper, areas where AI techniques are being used in the detection, diagnosis and epidemiological predictions, forecasting and social control for combating COVID-19 are discussed, highlighting areas of successful applications and underscoring issues that need to be addressed to achieve significant progress in battling COVID-19 and future pandemics. Several AI systems have been developed for diagnosing COVID-19 using medical imaging modalities such as chest CT and X-ray images. These AI systems mainly differ in their choices of the algorithms for image segmentation, classification and disease diagnosis. Other AI-based systems have focused on predicting mortality rate, long-term patient hospitalization and patient outcomes for COVID-19. AI has huge potential in the battle against the COVID-19 pandemic but successful practical deployments of these AI-based tools have so far been limited due to challenges such as limited data accessibility, the need for external evaluation of AI models, the lack of awareness of AI experts of the regulatory landscape governing the deployment of AI tools in healthcare, the need for clinicians and other experts to work with AI experts in a multidisciplinary context and the need to address public concerns over data collection, privacy, and protection. Having a dedicated team with expertise in medical data collection, privacy, access and sharing, using federated learning whereby AI scientists hand over training algorithms to the healthcare institutions to train models locally, and taking full advantage of biomedical data stored in biobanks can alleviate some of problems posed by these challenges. Addressing these challenges will ultimately accelerate the translation of AI research into practical and useful solutions for combating pandemics.
Collapse
Affiliation(s)
- Musa Abdulkareem
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - Steffen E. Petersen
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
30
|
Ankenbrand MJ, Shainberg L, Hock M, Lohr D, Schreiber LM. Sensitivity analysis for interpretation of machine learning based segmentation models in cardiac MRI. BMC Med Imaging 2021; 21:27. [PMID: 33588786 PMCID: PMC7885570 DOI: 10.1186/s12880-021-00551-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. RESULTS We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. CONCLUSIONS Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable.
Collapse
Affiliation(s)
- Markus J Ankenbrand
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany.
| | - Liliia Shainberg
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Michael Hock
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - David Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Laura M Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| |
Collapse
|
31
|
Busse A, Rajagopal R, Yücel S, Beller E, Öner A, Streckenbach F, Cantré D, Ince H, Weber MA, Meinel FG. Cardiac MRI-Update 2020. Radiologe 2021; 60:33-40. [PMID: 32385547 DOI: 10.1007/s00117-020-00687-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To review emerging techniques in cardiac magnetic resonance imaging (CMR) and their clinical applications with a special emphasis on new technologies, recent trials, and updated guidelines. TECHNOLOGICAL INNOVATIONS The utility of CMR has expanded with the development of new MR sequences, postprocessing techniques, and artificial intelligence-based technologies, which have substantially increased the spectrum, quality, and reliability of information that can be obtained by CMR. ESTABLISHED AND EMERGING INDICATIONS The CMR modality has become an irreplaceable tool for diagnosis, treatment guidance and follow-up of patients with ischemic heart disease, myocarditis, and cardiomyopathies. Its role has been further strengthened by recent trials and guidelines. Quantitative mapping techniques are increasingly used for tissue characterization and detection of diffuse myocardial changes including myocardial storage diseases. PRACTICAL RECOMMENDATIONS With state-of-the-art CMR sequences, postprocessing techniques and understanding of their interpretation, CMR makes invaluable contributions to provide state-of-the-art diagnostics and care for cardiac patients in a multidisciplinary team.
Collapse
Affiliation(s)
- Anke Busse
- Department of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Rengarajan Rajagopal
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Seyrani Yücel
- Department of Internal Medicine, Division of Cardiology, University Medical Center Rostock, Rostock, Germany
| | - Ebba Beller
- Department of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Alper Öner
- Department of Internal Medicine, Division of Cardiology, University Medical Center Rostock, Rostock, Germany
| | - Felix Streckenbach
- Department of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Daniel Cantré
- Department of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Hüseyin Ince
- Department of Internal Medicine, Division of Cardiology, University Medical Center Rostock, Rostock, Germany
| | - Marc-André Weber
- Department of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Felix G Meinel
- Department of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| |
Collapse
|
32
|
Hwang YT, Lee HL, Lu CH, Chang PC, Wo HT, Liu HT, Wen MS, Lin FC, Chou CC. A Novel Approach for Predicting Atrial Fibrillation Recurrence After Ablation Using Deep Convolutional Neural Networks by Assessing Left Atrial Curved M-Mode Speckle-Tracking Images. Front Cardiovasc Med 2021; 7:605642. [PMID: 33553257 PMCID: PMC7862331 DOI: 10.3389/fcvm.2020.605642] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Aims: Curved M-mode images of global strain (GS) and strain rate (GSR) provide sufficiently detailed spatiotemporal information of deformation mechanics. This study investigated whether a deep convolutional neural network (CNN) could accurately classify these images in patients with atrial fibrillation (AF) who underwent radiofrequency catheter ablation (RFCA) with different outcomes. Methods and Results: We retrospectively evaluated 606 consecutive patients who underwent RFCA for drug-refractory AF. Patients were divided into AF-free (n = 443) and AF-recurrent (n = 163) groups. Transthoracic echocardiography was performed within 24 h after RFCA. Left atrial curved M-mode speckle-tracking images were acquired from randomly selected 163 patients in AF-free group and 163 patients in AF-recurrent group as the dataset for deep CNN modeling. We used the ReLu activation function and repeatedly performed CNN model for 32 times to evaluate the stability of hyperparameters. Logistic regression models with the left atrial dimension, emptying fraction, and peak systolic GS as predictor variables were used for comparisons. Images from the apical 2-chamber (2-C) and 4-chamber (4-C) views had distinct features, leading to different CNN performance between settings; of them, the “4-C GS+4-C GSR” setting provided the highest performance index values. All four predictor variables used for logistic regression modeling were significant; however, none of them, individually or in any combined form, could outperform the optimal CNN model. Conclusion: The novel approach using deep CNNs for learning features of left atrial curved M-mode speckle-tracking images seems to be optimal for classifying outcome status after AF ablation.
Collapse
Affiliation(s)
- Yi-Ting Hwang
- Department of Statistics, National Taipei University, Taipei, Taiwan
| | - Hui-Ling Lee
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Cheng-Hui Lu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Po-Cheng Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hung-Ta Wo
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hao-Tien Liu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Fen-Chiung Lin
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chung-Chuan Chou
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
33
|
Martini N, Aimo A, Barison A, Della Latta D, Vergaro G, Aquaro GD, Ripoli A, Emdin M, Chiappino D. Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22:84. [PMID: 33287829 PMCID: PMC7720569 DOI: 10.1186/s12968-020-00690-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) is part of the diagnostic work-up for cardiac amyloidosis (CA). Deep learning (DL) is an application of artificial intelligence that may allow to automatically analyze CMR findings and establish the likelihood of CA. METHODS 1.5 T CMR was performed in 206 subjects with suspected CA (n = 100, 49% with unexplained left ventricular (LV) hypertrophy; n = 106, 51% with blood dyscrasia and suspected light-chain amyloidosis). Patients were randomly assigned to the training (n = 134, 65%), validation (n = 30, 15%), and testing subgroups (n = 42, 20%). Short axis, 2-chamber, 4-chamber late gadolinium enhancement (LGE) images were evaluated by 3 networks (DL algorithms). The tags "amyloidosis present" or "absent" were attributed when the average probability of CA from the 3 networks was ≥ 50% or < 50%, respectively. The DL strategy was compared to a machine learning (ML) algorithm considering all manually extracted features (LV volumes, mass and function, LGE pattern, early blood-pool darkening, pericardial and pleural effusion, etc.), to reproduce exam reading by an experienced operator. RESULTS The DL strategy displayed good diagnostic accuracy (88%), with an area under the curve (AUC) of 0.982. The precision (positive predictive value), recall score (sensitivity), and F1 score (a measure of test accuracy) were 83%, 95%, and 89% respectively. A ML algorithm considering all CMR features had a similar diagnostic yield to DL strategy (AUC 0.952 vs. 0.982; p = 0.39). CONCLUSIONS A DL approach evaluating LGE acquisitions displayed a similar diagnostic performance for CA to a ML-based approach, which simulates CMR reading by experienced operators.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Amyloid Neuropathies, Familial/diagnostic imaging
- Amyloid Neuropathies, Familial/pathology
- Amyloid Neuropathies, Familial/physiopathology
- Cardiomyopathy, Hypertrophic/diagnostic imaging
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/physiopathology
- Deep Learning
- Female
- Humans
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Image Processing, Computer-Assisted
- Immunoglobulin Light-chain Amyloidosis/diagnostic imaging
- Immunoglobulin Light-chain Amyloidosis/pathology
- Immunoglobulin Light-chain Amyloidosis/physiopathology
- Magnetic Resonance Imaging, Cine
- Male
- Myocardium/pathology
- Predictive Value of Tests
- Reproducibility of Results
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Nicola Martini
- Deep Health Unit, Fondazione Toscana Gabriele Monasterio, Pisa-Massa, Italy.
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Andrea Barison
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Andrea Ripoli
- Deep Health Unit, Fondazione Toscana Gabriele Monasterio, Pisa-Massa, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Dante Chiappino
- Deep Health Unit, Fondazione Toscana Gabriele Monasterio, Pisa-Massa, Italy
| |
Collapse
|
34
|
Itchhaporia D. Artificial intelligence in cardiology. Trends Cardiovasc Med 2020; 32:34-41. [PMID: 33242635 DOI: 10.1016/j.tcm.2020.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
This review examines the current state and application of artificial intelligence (AI) and machine learning (ML) in cardiovascular medicine. AI is changing the clinical practice of medicine in other specialties. With progress continuing in this emerging technology, the impact for cardiovascular medicine is highlighted to provide insight for the practicing clinician and to identify potential patient benefits.
Collapse
Affiliation(s)
- Dipti Itchhaporia
- Hoag Hospital Newport Beach and University of California, 520 Superior Avenue, Suite 325, Newport Beach, Irvine, CA 92663, United States.
| |
Collapse
|
35
|
Kheradvar A, Jafarkhani H, Guy TS, Finn JP. Prospect of artificial intelligence for the assessment of cardiac function and treatment of cardiovascular disease. Future Cardiol 2020; 17:183-187. [PMID: 32933328 DOI: 10.2217/fca-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Arash Kheradvar
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hamid Jafarkhani
- Center for Pervasive Communications & Computing, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas Sloane Guy
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Mathur P, Srivastava S, Xu X, Mehta JL. Artificial Intelligence, Machine Learning, and Cardiovascular Disease. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2020; 14:1179546820927404. [PMID: 32952403 PMCID: PMC7485162 DOI: 10.1177/1179546820927404] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Artificial intelligence (AI)-based applications have found widespread
applications in many fields of science, technology, and medicine. The use of
enhanced computing power of machines in clinical medicine and diagnostics has
been under exploration since the 1960s. More recently, with the advent of
advances in computing, algorithms enabling machine learning, especially deep
learning networks that mimic the human brain in function, there has been renewed
interest to use them in clinical medicine. In cardiovascular medicine, AI-based
systems have found new applications in cardiovascular imaging, cardiovascular
risk prediction, and newer drug targets. This article aims to describe different
AI applications including machine learning and deep learning and their
applications in cardiovascular medicine. AI-based applications have enhanced our
understanding of different phenotypes of heart failure and congenital heart
disease. These applications have led to newer treatment strategies for different
types of cardiovascular diseases, newer approach to cardiovascular drug therapy
and postmarketing survey of prescription drugs. However, there are several
challenges in the clinical use of AI-based applications and interpretation of
the results including data privacy, poorly selected/outdated data, selection
bias, and unintentional continuance of historical biases/stereotypes in the data
which can lead to erroneous conclusions. Still, AI is a transformative
technology and has immense potential in health care.
Collapse
Affiliation(s)
- Pankaj Mathur
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shweta Srivastava
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiaowei Xu
- Department of Information Science, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Jawahar L Mehta
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
37
|
Lekadir K, Leiner T, Young AA, Petersen SE. Editorial: Current and Future Role of Artificial Intelligence in Cardiac Imaging. Front Cardiovasc Med 2020; 7:137. [PMID: 32850987 PMCID: PMC7426695 DOI: 10.3389/fcvm.2020.00137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/30/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karim Lekadir
- Universitat de Barcelona, Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques and Informàtica, Barcelona, Spain
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Centre, Utrecht, Netherlands
| | - Alistair A Young
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Steffen E Petersen
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
38
|
Fenech ME, Buston O. AI in Cardiac Imaging: A UK-Based Perspective on Addressing the Ethical, Social, and Political Challenges. Front Cardiovasc Med 2020; 7:54. [PMID: 32351974 PMCID: PMC7174604 DOI: 10.3389/fcvm.2020.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Imaging and cardiology are the healthcare domains which have seen the greatest number of FDA approvals for novel data-driven technologies, such as artificial intelligence, in recent years. The increasing use of such data-driven technologies in healthcare is presenting a series of important challenges to healthcare practitioners, policymakers, and patients. In this paper, we review ten ethical, social, and political challenges raised by these technologies. These range from relatively pragmatic concerns about data acquisition to potentially more abstract issues around how these technologies will impact the relationships between practitioners and their patients, and between healthcare providers themselves. We describe what is being done in the United Kingdom to identify the principles that should guide AI development for health applications, as well as more recent efforts to convert adherence to these principles into more practical policy. We also consider the approaches being taken by healthcare organizations and regulators in the European Union, the United States, and other countries. Finally, we discuss ways by which researchers and frontline clinicians, in cardiac imaging and more broadly, can ensure that these technologies are acceptable to their patients.
Collapse
|
39
|
de Marvao A, Dawes TJW, O'Regan DP. Artificial Intelligence for Cardiac Imaging-Genetics Research. Front Cardiovasc Med 2020; 6:195. [PMID: 32039240 PMCID: PMC6985036 DOI: 10.3389/fcvm.2019.00195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular conditions remain the leading cause of mortality and morbidity worldwide, with genotype being a significant influence on disease risk. Cardiac imaging-genetics aims to identify and characterize the genetic variants that influence functional, physiological, and anatomical phenotypes derived from cardiovascular imaging. High-throughput DNA sequencing and genotyping have greatly accelerated genetic discovery, making variant interpretation one of the key challenges in contemporary clinical genetics. Heterogeneous, low-fidelity phenotyping and difficulties integrating and then analyzing large-scale genetic, imaging and clinical datasets using traditional statistical approaches have impeded process. Artificial intelligence (AI) methods, such as deep learning, are particularly suited to tackle the challenges of scalability and high dimensionality of data and show promise in the field of cardiac imaging-genetics. Here we review the current state of AI as applied to imaging-genetics research and discuss outstanding methodological challenges, as the field moves from pilot studies to mainstream applications, from one dimensional global descriptors to high-resolution models of whole-organ shape and function, from univariate to multivariate analysis and from candidate gene to genome-wide approaches. Finally, we consider the future directions and prospects of AI imaging-genetics for ultimately helping understand the genetic and environmental underpinnings of cardiovascular health and disease.
Collapse
Affiliation(s)
| | | | - Declan P. O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Hampe N, Wolterink JM, van Velzen SGM, Leiner T, Išgum I. Machine Learning for Assessment of Coronary Artery Disease in Cardiac CT: A Survey. Front Cardiovasc Med 2019; 6:172. [PMID: 32039237 PMCID: PMC6988816 DOI: 10.3389/fcvm.2019.00172] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023] Open
Abstract
Cardiac computed tomography (CT) allows rapid visualization of the heart and coronary arteries with high spatial resolution. However, analysis of cardiac CT scans for manifestation of coronary artery disease is time-consuming and challenging. Machine learning (ML) approaches have the potential to address these challenges with high accuracy and consistent performance. In this mini review, we present a survey of the literature on ML-based analysis of coronary artery disease in cardiac CT. We summarize ML methods for detection and characterization of atherosclerotic plaque as well as anatomically and functionally significant coronary artery stenosis.
Collapse
Affiliation(s)
- Nils Hampe
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jelmer M Wolterink
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sanne G M van Velzen
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ivana Išgum
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|