1
|
Herbert A, Cherednichenko O, Lybrand TP, Egli M, Poptsova M. Zα and Zβ Localize ADAR1 to Flipons That Modulate Innate Immunity, Alternative Splicing, and Nonsynonymous RNA Editing. Int J Mol Sci 2025; 26:2422. [PMID: 40141064 PMCID: PMC11942513 DOI: 10.3390/ijms26062422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The double-stranded RNA editing enzyme ADAR1 connects two forms of genetic programming, one based on codons and the other on flipons. ADAR1 recodes codons in pre-mRNA by deaminating adenosine to form inosine, which is translated as guanosine. ADAR1 also plays essential roles in the immune defense against viruses and cancers by recognizing left-handed Z-DNA and Z-RNA (collectively called ZNA). Here, we review various aspects of ADAR1 biology, starting with codons and progressing to flipons. ADAR1 has two major isoforms, with the p110 protein lacking the p150 Zα domain that binds ZNAs with high affinity. The p150 isoform is induced by interferon and targets ALU inverted repeats, a class of endogenous retroelement that promotes their transcription and retrotransposition by incorporating Z-flipons that encode ZNAs and G-flipons that form G-quadruplexes (GQ). Both p150 and p110 include the Zβ domain that is related to Zα but does not bind ZNAs. Here we report strong evidence that Zβ binds the GQ that are formed co-transcriptionally by ALU repeats and within R-loops. By binding GQ, ADAR1 suppresses ALU-mediated alternative splicing, generates most of the reported nonsynonymous edits and promotes R-loop resolution. The recognition of the various alternative nucleic acid conformations by ADAR1 connects genetic programming by flipons with the encoding of information by codons. The findings suggest that incorporating G-flipons into editmers might improve the therapeutic editing efficacy of ADAR1.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, Charlestown, MA 02129, USA
| | - Oleksandr Cherednichenko
- International Laboratory of Bioinformatics, HSE University, 101000 Moscow, Russia; (O.C.); (M.P.)
| | - Terry P. Lybrand
- Department of Chemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA;
- Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA;
| | - Maria Poptsova
- International Laboratory of Bioinformatics, HSE University, 101000 Moscow, Russia; (O.C.); (M.P.)
| |
Collapse
|
2
|
Roučová K, Vopálenský V, Mašek T, Del Llano E, Provazník J, Landry JJM, Azevedo N, Ehler E, Beneš V, Pospíšek M. Loss of ADAR1 protein induces changes in small RNA landscape in hepatocytes. RNA (NEW YORK, N.Y.) 2024; 30:1164-1183. [PMID: 38844344 PMCID: PMC11331409 DOI: 10.1261/rna.080097.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 08/18/2024]
Abstract
In recent years, numerous evidence has been accumulated about the extent of A-to-I editing in human RNAs and the key role ADAR1 plays in the cellular editing machinery. It has been shown that A-to-I editing occurrence and frequency are tissue-specific and essential for some tissue development, such as the liver. To study the effect of ADAR1 function in hepatocytes, we have created Huh7.5 ADAR1 KO cell lines. Upon IFN treatment, the Huh7.5 ADAR1 KO cells show rapid arrest of growth and translation, from which they do not recover. We analyzed translatome changes by using a method based on sequencing of separate polysome profile RNA fractions. We found significant changes in the transcriptome and translatome of the Huh7.5 ADAR1 KO cells. The most prominent changes include negatively affected transcription by RNA polymerase III and the deregulation of snoRNA and Y RNA levels. Furthermore, we observed that ADAR1 KO polysomes are enriched in mRNAs coding for proteins pivotal in a wide range of biological processes such as RNA localization and RNA processing, whereas the unbound fraction is enriched mainly in mRNAs coding for ribosomal proteins and translational factors. This indicates that ADAR1 plays a more relevant role in small RNA metabolism and ribosome biogenesis.
Collapse
Affiliation(s)
- Kristina Roučová
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Václav Vopálenský
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Tomáš Mašek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Edgar Del Llano
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | | | | | | | - Edvard Ehler
- Department of Biology and Environmental Studies, Faculty of Education, Charles University, 116 39 Prague, Czech Republic
| | | | - Martin Pospíšek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
3
|
Acharya P, Parkins S, Tranter M. RNA binding proteins as mediators of pathological cardiac remodeling. Front Cell Dev Biol 2024; 12:1368097. [PMID: 38818408 PMCID: PMC11137256 DOI: 10.3389/fcell.2024.1368097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
RNA binding proteins (RBPs) play a central in the post-transcriptional regulation of gene expression, which can account for up to 50% of all variations in protein expression within a cell. Following their binding to target RNAs, RBPs most typically confer changes in gene expression through modulation of alternative spicing, RNA stabilization/degradation, or ribosome loading/translation rate. All of these post-transcriptional regulatory processes have been shown to play a functional role in pathological cardiac remodeling, and a growing body of evidence is beginning to identify the mechanistic contribution of individual RBPs and their cardiac RNA targets. This review highlights the mechanisms of RBP-dependent post-transcriptional gene regulation in cardiomyocytes and fibroblasts and our current understanding of how RNA binding proteins functionally contribute to pathological cardiac remodeling.
Collapse
Affiliation(s)
- Pooja Acharya
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sharon Parkins
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Tranter
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
4
|
Benak D, Kolar F, Hlavackova M. Epitranscriptomic Regulations in the Heart. Physiol Res 2024; 73:S185-S198. [PMID: 38634649 PMCID: PMC11412340 DOI: 10.33549/physiolres.935265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA modifications affect key stages of the RNA life cycle, including splicing, export, decay, and translation. Epitranscriptomic regulations therefore significantly influence cellular physiology and pathophysiology. Here, we selected some of the most abundant modifications and reviewed their roles in the heart and in cardiovascular diseases: N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), pseudouridine (?), 5 methylcytidine (m5C), and inosine (I). Dysregulation of epitranscriptomic machinery affecting these modifications vastly changes the cardiac phenotype and is linked with many cardiovascular diseases such as myocardial infarction, cardiomyopathies, or heart failure. Thus, a deeper understanding of these epitranscriptomic changes and their regulatory mechanisms can enhance our knowledge of the molecular underpinnings of prevalent cardiac diseases, potentially paving the way for novel therapeutic strategies. Keywords: Epitranscriptomics, RNA modifications, Epigenetics, m6A, RNA, Heart.
Collapse
Affiliation(s)
- D Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
5
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 PMCID: PMC11896630 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
6
|
Kang J, Rhee J, Wang C, Yang Y, Li G, Li H. Unlocking the dark matter: noncoding RNAs and RNA modifications in cardiac aging. Am J Physiol Heart Circ Physiol 2024; 326:H832-H844. [PMID: 38305752 PMCID: PMC11221808 DOI: 10.1152/ajpheart.00532.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Cardiac aging is a multifaceted process that encompasses structural and functional alterations culminating in heart failure. As the elderly population continues to expand, there is a growing urgent need for interventions to combat age-related cardiac functional decline. Noncoding RNAs have emerged as critical regulators of cellular and biochemical processes underlying cardiac disease. This review summarizes our current understanding of how noncoding RNAs function in the heart during aging, with particular emphasis on mechanisms of RNA modification that control their activity. Targeting noncoding RNAs as potential novel therapeutics in cardiac aging is also discussed.
Collapse
Affiliation(s)
- Jiayi Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - James Rhee
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| | - Chunyan Wang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Yolander Yang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guoping Li
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Haobo Li
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Chen J, Jin J, Jiang J, Wang Y. Adenosine deaminase acting on RNA 1 (ADAR1) as crucial regulators in cardiovascular diseases: structures, pathogenesis, and potential therapeutic approach. Front Pharmacol 2023; 14:1194884. [PMID: 37663249 PMCID: PMC10469703 DOI: 10.3389/fphar.2023.1194884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases that have a major impact on global health and are the leading cause of death. A large number of chemical base modifications in ribonucleic acid (RNA) are associated with cardiovascular diseases. A variety of ribonucleic acid modifications exist in cells, among which adenosine deaminase-dependent modification is one of the most common ribonucleic acid modifications. Adenosine deaminase acting on ribonucleic acid 1 (Adenosine deaminase acting on RNA 1) is a widely expressed double-stranded ribonucleic acid adenosine deaminase that forms inosine (A-to-I) by catalyzing the deamination of adenosine at specific sites of the target ribonucleic acid. In this review, we provide a comprehensive overview of the structure of Adenosine deaminase acting on RNA 1 and summarize the regulatory mechanisms of ADAR1-mediated ribonucleic acid editing in cardiovascular diseases, indicating Adenosine deaminase acting on RNA 1 as a promising therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Junyan Jin
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Sopic M, Robinson EL, Emanueli C, Srivastava P, Angione C, Gaetano C, Condorelli G, Martelli F, Pedrazzini T, Devaux Y. Integration of epigenetic regulatory mechanisms in heart failure. Basic Res Cardiol 2023; 118:16. [PMID: 37140699 PMCID: PMC10158703 DOI: 10.1007/s00395-023-00986-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.
Collapse
Affiliation(s)
- Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Emma L Robinson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
- Centre for Digital Innovation, Teesside University, Campus Heart, Tees Valley, Middlesbrough, TS1 3BX, UK
- National Horizons Centre, Darlington, DL1 1HG, UK
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Gianluigi Condorelli
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Arnold-Heller-Str.3, 24105, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097, Milan, Italy
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011, Lausanne, Switzerland
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg.
| |
Collapse
|
9
|
Abstract
Cardiovascular disease still remains the leading cause of morbidity and mortality worldwide. Current pharmacological or interventional treatments help to tackle symptoms and even reduce mortality, but cardiovascular disease cases continue to rise. The emergence of novel therapeutic strategies that precisely and efficiently combat cardiovascular disease is therefore deemed more essential than ever. RNA editing, the cell-intrinsic deamination of adenosine or cytidine RNA residues, changes the molecular identity of edited nucleotides, severely altering the fate of RNA molecules involved in key biological processes. The most common type of RNA editing is the deamination of adenosine residue to inosine (A-to-I), which is catalysed by adenosine deaminases acting on RNA (ADARs). Recent efforts have convincingly liaised RNA editing-based mechanisms to the pathophysiology of the cardiovascular system. In this review, we will briefly introduce the basic concepts of the RNA editing field of research. We will particularly focus our discussion on the therapeutic exploitation of RNA editing as a novel therapeutic tool as well as the future perspectives for its use in cardiovascular disease treatment.
Collapse
|
10
|
Abstract
RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA-protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications - adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation - as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.
Collapse
|
11
|
Granulosa Cell Specific Loss of Adar in Mice Delays Ovulation, Oocyte Maturation and Leads to Infertility. Int J Mol Sci 2022; 23:ijms232214001. [PMID: 36430478 PMCID: PMC9695778 DOI: 10.3390/ijms232214001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Adenosine deaminases acting on RNA-(ADAR) comprise one family of RNA editing enzymes that specifically catalyze adenosine to inosine (A-to-I) editing. A granulosa cell (GC) specific Adar depleted mouse model [Adar flox/flox:Cyp19a1-Cre/+ (gcAdarKO)] was used to evaluate the role of ADAR1 during the periovulatory period. Loss of Adar in GCs led to failure to ovulate at 16 h post-hCG, delayed oocyte germinal vesicle breakdown and severe infertility. RNAseq analysis of GC collected from gcAdarKO and littermate control mice at 0 and 4 h post-hCG following a super-ovulatory dose of eCG (48 h), revealed minimal differences after eCG treatment alone (0 h), consistent with normal folliculogenesis observed histologically and uterine estrogenic responses. In contrast, 300 differential expressed genes (DEGs; >1.5-fold change and FDRP < 0.1) were altered at 4 h post-hCG. Ingenuity pathway analysis identified many downstream targets of estrogen and progesterone pathways, while multiple genes involved in inflammatory responses were upregulated in the gcAdarKO GCs. Temporal expression analysis of GCs at 0, 4, 8, and 12 h post-hCG of Ifi44, Ifit1, Ifit3b, and Oas1g and Ovgp1 confirmed upregulation of these inflammatory and interferon genes and downregulation of Ovgp1 a glycoprotein involved in oocyte zona pellucida stability. Thus, loss of ADAR1 in GCs leads to increased expression of inflammatory and interferon response genes which are temporally linked to ovulation failure, alterations in oocyte developmental progression and infertility.
Collapse
|
12
|
Zhang J, Gutierrez-Lara EJ, Liang Y, Sheikh F. Functions Beyond the Editor's I in Regulating Cardiac Innate Immunity and Heart Failure. Circ Res 2022; 131:598-600. [PMID: 36108055 PMCID: PMC10068842 DOI: 10.1161/circresaha.122.321777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jing Zhang
- Department of Medicine (Cardiology Division), University of California San Diego, La Jolla
| | - Erika J Gutierrez-Lara
- Department of Medicine (Cardiology Division), University of California San Diego, La Jolla
| | - Yan Liang
- Department of Medicine (Cardiology Division), University of California San Diego, La Jolla
| | - Farah Sheikh
- Department of Medicine (Cardiology Division), University of California San Diego, La Jolla
| |
Collapse
|
13
|
Garcia-Gonzalez C, Dieterich C, Maroli G, Wiesnet M, Wietelmann A, Li X, Yuan X, Graumann J, Stellos K, Kubin T, Schneider A, Braun T. ADAR1 Prevents Autoinflammatory Processes in the Heart Mediated by IRF7. Circ Res 2022; 131:580-597. [PMID: 36000401 DOI: 10.1161/circresaha.122.320839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND ADAR1 (adenosine deaminase acting on RNA-1)-mediated adenosine to inosine (A-to-I) RNA editing plays an essential role for distinguishing endogenous from exogenous RNAs, preventing autoinflammatory ADAR1 also regulates cellular processes by recoding specific mRNAs, thereby altering protein functions, but may also act in an editing-independent manner. The specific role of ADAR1 in cardiomyocytes and its mode of action in the heart is not fully understood. To determine the role of ADAR1 in the heart, we used different mutant mouse strains, which allows to distinguish immunogenic, editing-dependent, and editing-independent functions of ADAR1. METHODS Different Adar1-mutant mouse strains were employed for gene deletion or specific inactivation of ADAR1 enzymatic activity in cardiomyocytes, either alone or in combination with Ifih1 (interferon induced with helicase C domain 1) or Irf7 (interferon regulatory factor 7) gene inactivation. Mutant mice were investigated by immunofluorescence, Western blot, RNAseq, proteomics, and functional MRI analysis. RESULTS Inactivation of Adar1 in cardiomyocytes resulted in late-onset autoinflammatory myocarditis progressing into dilated cardiomyopathy and heart failure at 6 months of age. Adar1 depletion activated interferon signaling genes but not NFκB (nuclear factor kappa B) signaling or apoptosis and reduced cardiac hypertrophy during pressure overload via induction of Irf7. Additional inactivation of the cytosolic RNA sensor MDA5 (melanoma differentiation-associated gene 5; encoded by the Ifih1 gene) in Adar1 mutant mice prevented activation of interferon signaling gene and delayed heart failure but did not prevent lethality after 8.5 months. In contrast, compound mutants only expressing catalytically inactive ADAR1 in an Ifih1-mutant background were completely normal. Inactivation of Irf7 attenuated the phenotype of Adar1-deficient cardiomyocytes to a similar extent as Ifih1 depletion, identifying IRF7 as the main mediator of autoinflammatory responses caused by the absence of ADAR1 in cardiomyocytes. CONCLUSIONS Enzymatically active ADAR1 prevents IRF7-mediated autoinflammatory reactions in the heart triggered by endogenous nonedited RNAs. In addition to RNA editing, ADAR1 also serves editing-independent roles in the heart required for long-term cardiac function and survival.
Collapse
Affiliation(s)
- Claudia Garcia-Gonzalez
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. Del Hospital Universitario, Oviedo, Spain (C.G.-G.)
| | - Christoph Dieterich
- Department of Internal Medicine III and Klaus Tschira Institute for Computational Cardiology, Section of Bioinformatics and Systems Cardiology, University Hospital, Heidelberg, Germany (C.D.)
| | - Giovanni Maroli
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Marion Wiesnet
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Astrid Wietelmann
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Xiang Li
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Xuejun Yuan
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Johannes Graumann
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.)
| | - Konstantinos Stellos
- German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.).,Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (K.S.).,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom (K.S.)
| | - Thomas Kubin
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany (T.K.)
| | - Andre Schneider
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Thomas Braun
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.)
| |
Collapse
|
14
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
15
|
Neuronal role of taxi is imperative for flight in Drosophila melanogaster. Gene X 2022; 833:146593. [PMID: 35597528 DOI: 10.1016/j.gene.2022.146593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Extensive studies in Drosophila have led to the elucidation of the roles of many molecular players involved in the sensorimotor coordination of flight. However, the identification and characterisation of new players can add novel perspectives to the process. In this paper, we show that the extant mutant, jumper, is a hypermorphic allele of the taxi/delilah gene, which encodes a transcription factor. The defective flight of jumper flies results from the insertion of an I-element in the 5'-UTR of taxi gene, leading to an over-expression of the taxi. We also show that the molecular lesion responsible for the taxi1 allele results from a 25 bp deletion leading to a shift in the reading frame at the C-terminus of the taxi coding sequence. Thus, the last 20 residues are replaced by 32 disparate residues in taxi1. Both taxi1, a hypomorphic allele, and the CRISPR-Cas9 knock-out (taxiKO) null allele, show a defective flight phenotype. Electrophysiological studies show taxi hypermorphs, hypomorphs, and knock out flies show abnormal neuronal firing. We further show that neuronal-specific knock-down or over-expression of taxi cause a defect in the brain's inputs to the flight muscles, leading to reduced flight ability. Through transcriptomic analysis of the taxiKO fly head, we have identified several putative targets of Taxi that may play important roles in flight. In conclusion, from molecularly characterising jumper to establishing Taxi's role during Drosophila flight, our work shows that the forward genetics approach still can lead to the identification of novel molecular players required for neuronal transmission.
Collapse
|
16
|
Woudenberg T, Kruyt ND, Quax PHA, Nossent AY. Change of Heart: the Epitranscriptome of Small Non-coding RNAs in Heart Failure. Curr Heart Fail Rep 2022; 19:255-266. [PMID: 35876969 PMCID: PMC9534797 DOI: 10.1007/s11897-022-00561-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Purpose of Review Small non-coding RNAs regulate gene expression and are highly implicated in heart failure. Recently, an additional level of post-transcriptional regulation has been identified, referred to as the epitranscriptome, which encompasses the body of post-transcriptional modifications that are placed on RNA molecules. In this review, we summarize the current knowledge on the small non-coding RNA epitranscriptome in heart failure. Recent Findings With the rise of new methods to study RNA modifications, epitranscriptome research has begun to take flight. Over the past 3 years, the number of publications on the epitranscriptome in heart failure has significantly increased, and we expect many more highly relevant publications to come out over the next few years. Summary Currently, at least six modifications on small non-coding RNAs have been investigated in heart failure-relevant studies, namely N6-adenosine, N5-cytosine and N7-guanosine methylation, 2’-O-ribose-methylation, adenosine-to-inosine editing, and isomiRs. Their potential role in heart failure is discussed.
Collapse
Affiliation(s)
- Tamar Woudenberg
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Nyika D Kruyt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
17
|
Jiapaer Z, Su D, Hua L, Lehmann HI, Gokulnath P, Vulugundam G, Song S, Zhang L, Gong Y, Li G. Regulation and roles of RNA modifications in aging-related diseases. Aging Cell 2022; 21:e13657. [PMID: 35718942 PMCID: PMC9282851 DOI: 10.1111/acel.13657] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/03/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
With the aging of the global population, accumulating interest is focused on manipulating the fundamental aging-related signaling pathways to delay the physiological aging process and eventually slow or prevent the appearance or severity of multiple aging-related diseases. Recently, emerging evidence has shown that RNA modifications, which were historically considered infrastructural features of cellular RNAs, are dynamically regulated across most of the RNA species in cells and thereby critically involved in major biological processes, including cellular senescence and aging. In this review, we summarize the current knowledge about RNA modifications and provide a catalog of RNA modifications on different RNA species, including mRNAs, miRNAs, lncRNA, tRNAs, and rRNAs. Most importantly, we focus on the regulation and roles of these RNA modifications in aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, cataracts, osteoporosis, and fertility decline. This would be an important step toward a better understanding of fundamental aging mechanisms and thereby facilitating the development of novel diagnostics and therapeutics for aging-related diseases.
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Dingwen Su
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Helge Immo Lehmann
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gururaja Vulugundam
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Naples, Italy
| | - Shannan Song
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Lingying Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Quiles-Jiménez A, Dahl TB, Bjørås M, Alseth I, Halvorsen B, Gregersen I. Epitranscriptome in Ischemic Cardiovascular Disease: Potential Target for Therapies. Stroke 2022; 53:2114-2122. [PMID: 35240858 DOI: 10.1161/strokeaha.121.037581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The global risk of cardiovascular disease, including ischemic disease such as stroke, remains high, and cardiovascular disease is the cause of one-third of all deaths worldwide. The main subjacent cause, atherosclerosis, is not fully understood. To improve early diagnosis and therapeutic strategies, it is crucial to unveil the key molecular mechanisms that lead to atherosclerosis development. The field of epitranscriptomics is blossoming and quickly advancing in fields like cancer research, nevertheless, poorly understood in the context of cardiovascular disease. Epitranscriptomic modifications are shown to regulate the metabolism and function of RNA molecules, which are important for cell functions such as cell proliferation, a key aspect in atherogenesis. As such, epitranscriptomic regulatory mechanisms can serve as novel checkpoints in gene expression during disease development. In this review, we describe examples of the latest research investigating epitranscriptomic modifications, in particular A-to-I editing and the covalent modification N6-methyladenosine and their regulatory proteins, in the context of cardiovascular disease. We additionally discuss the potential of these mechanisms as therapeutic targets and novel treatment options.
Collapse
Affiliation(s)
- Ana Quiles-Jiménez
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.Q.-J., B.H.)
| | - Tuva B Dahl
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Division of Critical Care and Emergencies, Oslo University Hospital, Rikshospitalet, Norway. (T.B.D.)
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway. (M.B., I.A.).,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (M.B.)
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway. (M.B., I.A.)
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.Q.-J., B.H.)
| | - Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.)
| |
Collapse
|
19
|
Wu X, Wang L, Wang K, Li J, Chen R, Wu X, Ni G, Liu C, Das S, Sluijter JP, Li X, Xiao J. ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol Ther 2022; 30:400-414. [PMID: 34274534 PMCID: PMC8753375 DOI: 10.1016/j.ymthe.2021.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/12/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023] Open
Abstract
Exercise training benefits the heart. The knowledge of post-transcription regulation, especially RNA editing, in hearts remain rare. ADAR2 is an enzyme that edits adenosine to inosine nucleotides in double-stranded RNA, and RNA editing is associated with many human diseases. We found that ADAR2 was upregulated in hearts during exercise training. AAV9-mediated cardiac-specific ADAR2 overexpression attenuated acute myocardial infarction (AMI), MI remodeling, and doxorubicin (DOX)-induced cardiotoxicity. In vitro, overexpression of ADAR2 inhibited DOX-induced cardiomyocyte (CM) apoptosis. but it could also induce neonatal rat CM proliferation. Mechanistically, ADAR2 could regulate the abundance of mature miR-34a in CMs. Regulations of miR-34a or its target genes (Sirt1, Cyclin D1, and Bcl2) could affect the pro-proliferation and anti-apoptosis effects of ADAR2 on CMs. These data demonstrated that exercise-induced ADAR2 protects the heart from MI and DOX-induced cardiotoxicity. Our work suggests that ADAR2 overexpression or a post-transcriptional associated RNA editing via ADAR2 may be a promising therapeutic strategy for heart diseases.
Collapse
Affiliation(s)
- Xiaoting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lijun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jin Li
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chang Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Saumya Das
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joost P.G. Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands,UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China,Corresponding author: Prof. Xinli Li, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China,Corresponding author: Prof. Junjie Xiao, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
20
|
Guo X, Liu S, Yan R, Nguyen V, Zenati M, Billiar TR, Wang Q. ADAR1 RNA editing regulates endothelial cell functions via the MDA-5 RNA sensing signaling pathway. Life Sci Alliance 2022; 5:5/3/e202101191. [PMID: 34969816 PMCID: PMC8739526 DOI: 10.26508/lsa.202101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
The RNA-sensing signaling pathway has been well studied as an essential antiviral mechanism of innate immunity. However, its role in non-infected cells is yet to be thoroughly characterized. Here, we demonstrated that the RNA sensing signaling pathway also reacts to the endogenous cellular RNAs in endothelial cells (ECs), and this reaction is regulated by the RNA-editing enzyme ADAR1. Cellular RNA sequencing analysis showed that EC RNAs endure extensive RNA editing, especially in the RNA transcripts of short interspersed nuclear elements. The EC-specific deletion of ADAR1 dramatically reduced the editing level on short interspersed nuclear element RNAs, resulting in newborn death in mice with damage evident in multiple organs. Genome-wide gene expression analysis revealed a prominent innate immune activation with a dramatically elevated expression of interferon-stimulated genes. However, blocking the RNA sensing signaling pathway by deletion of the cellular RNA receptor MDA-5 prevented interferon-stimulated gene expression and rescued the newborn mice from death. This evidence demonstrated that the RNA-editing/RNA-sensing signaling pathway dramatically modulates EC function, representing a novel molecular mechanism for the regulation of EC functions.
Collapse
Affiliation(s)
- Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rose Yan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vy Nguyen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mazen Zenati
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA .,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,VA Pittsburgh Health System, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
22
|
Chen J, Liu HF, Qiao LB, Wang FB, Wang L, Lin Y, Liu J. Global RNA editing identification and characterization during human pluripotent-to-cardiomyocyte differentiation. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:879-891. [PMID: 34760335 PMCID: PMC8551472 DOI: 10.1016/j.omtn.2021.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/05/2021] [Accepted: 10/01/2021] [Indexed: 01/19/2023]
Abstract
RNA editing is widely involved in stem cell differentiation and development; however, RNA editing events during human cardiomyocyte differentiation have not yet been characterized and elucidated. Here, we identified genome-wide RNA editing sites and systemically characterized their genomic distribution during four stages of human cardiomyocyte differentiation. It was found that the expression level of ADAR1 affected the global number of adenosine to inosine (A-to-I) editing sites but not the editing degree. Next, we identified 43, 163, 544, and 141 RNA editing sites that contribute to changes in amino acid sequences, variation in alternative splicing, alterations in miRNA-target binding, and changes in gene expression, respectively. Generally, RNA editing showed a stage-specific pattern with 211 stage-shared editing sites. Interestingly, cardiac muscle contraction and heart-disease-related pathways were enriched by cardio-specific editing genes, emphasizing the connection between cardiomyocyte differentiation and heart diseases from the perspective of RNA editing. Finally, it was found that these RNA editing sites are also related to several congenital and noncongenital heart diseases. Together, our study provides a new perspective on cardiomyocyte differentiation and offers more opportunities to understand the mechanisms underlying cell fate determination, which can promote the development of cardiac regenerative medicine and therapies for human heart diseases.
Collapse
Affiliation(s)
- Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hui-Fang Liu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Li-Bo Qiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fang-Bin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.,Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
23
|
Sikorski V, Karjalainen P, Blokhina D, Oksaharju K, Khan J, Katayama S, Rajala H, Suihko S, Tuohinen S, Teittinen K, Nummi A, Nykänen A, Eskin A, Stark C, Biancari F, Kiss J, Simpanen J, Ropponen J, Lemström K, Savinainen K, Lalowski M, Kaarne M, Jormalainen M, Elomaa O, Koivisto P, Raivio P, Bäckström P, Dahlbacka S, Syrjälä S, Vainikka T, Vähäsilta T, Tuncbag N, Karelson M, Mervaala E, Juvonen T, Laine M, Laurikka J, Vento A, Kankuri E. Epitranscriptomics of Ischemic Heart Disease-The IHD-EPITRAN Study Design and Objectives. Int J Mol Sci 2021; 22:6630. [PMID: 34205699 PMCID: PMC8235045 DOI: 10.3390/ijms22126630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m6A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m6A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m6A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Pasi Karjalainen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Daria Blokhina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Kati Oksaharju
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jahangir Khan
- Tampere Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland; (J.K.); (J.L.)
| | | | - Helena Rajala
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Satu Suihko
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Suvi Tuohinen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Kari Teittinen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Annu Nummi
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Antti Nykänen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Arda Eskin
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, 06800 Ankara, Turkey;
| | - Christoffer Stark
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Fausto Biancari
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
- Heart Center, Turku University Hospital and Department of Surgery, University of Turku, 20521 Turku, Finland
- Research Unit of Surgery, Anesthesiology and Critical Care, University of Oulu, 90014 Oulu, Finland
| | - Jan Kiss
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jarmo Simpanen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jussi Ropponen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Karl Lemström
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Kimmo Savinainen
- Clinical Biobank Tampere, Tampere University Hospital, 33520 Tampere, Finland;
| | - Maciej Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Biomedical Proteomics, 61-704 Poznan, Poland
| | - Markku Kaarne
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Mikko Jormalainen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Outi Elomaa
- Folkhälsan Research Center, 00250 Helsinki, Finland; (S.K.); (O.E.)
| | - Pertti Koivisto
- Chemistry Unit, Finnish Food Authority, 00790 Helsinki, Finland;
| | - Peter Raivio
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Pia Bäckström
- Helsinki Biobank, Hospital District of Helsinki and Uusimaa, 00029 Helsinki, Finland;
| | - Sebastian Dahlbacka
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Simo Syrjälä
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Tiina Vainikka
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Tommi Vähäsilta
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, 34450 Istanbul, Turkey;
- School of Medicine, Koç University, 34450 Istanbul, Turkey
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia;
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Tatu Juvonen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
- Research Unit of Surgery, Anesthesiology and Critical Care, University of Oulu, 90014 Oulu, Finland
| | - Mika Laine
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jari Laurikka
- Tampere Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland; (J.K.); (J.L.)
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| |
Collapse
|
24
|
McMahon M, Forester C, Buffenstein R. Aging through an epitranscriptomic lens. NATURE AGING 2021; 1:335-346. [PMID: 37117595 DOI: 10.1038/s43587-021-00058-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 04/30/2023]
Abstract
The mechanistic causes of aging, the time-related decline in function and good health that leads to increased mortality, remain poorly understood. Here we propose that age-dependent alteration of the epitranscriptome, encompassing more than 150 chemically distinct post-transcriptional modifications or editing events, warrants exploration as an important modulator of aging. The epitranscriptome is a potent regulator of RNA function, diverse cellular processes and tissue regenerative capacity. To date, only a few studies link alterations in the epitranscriptome to molecular and physiological changes during aging; however, epitranscriptome dysfunction is associated with and underlies several age-associated pathologies, including cancer and neurodegenerative, cardiovascular and autoimmune diseases. For example, changes in RNA modifications (such as N6-methyladenosine and inosine) impact cardiac physiology and are linked to cardiac fibrosis. Although an uncharted research focus, mapping epitranscriptome alterations in the context of aging may elucidate novel predictors of both health and lifespan, and may identify therapeutic targets for attenuating aging and abrogating age-related diseases.
Collapse
Affiliation(s)
- Mary McMahon
- Calico Life Sciences LLC, South San Francisco, CA, USA.
| | - Craig Forester
- Department of Pediatrics, University of Colorado, Denver, CO, USA
- Children's Hospital Colorado, Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
25
|
Moore JB, Sadri G, Fischer AG, Weirick T, Militello G, Wysoczynski M, Gumpert AM, Braun T, Uchida S. The A-to-I RNA Editing Enzyme Adar1 Is Essential for Normal Embryonic Cardiac Growth and Development. Circ Res 2020; 127:550-552. [PMID: 32362246 DOI: 10.1161/circresaha.120.316932] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Joseph B Moore
- From the Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, KY (J.B.M., G.S., A.G.F., M.W., S.U.)
| | - Ghazal Sadri
- From the Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, KY (J.B.M., G.S., A.G.F., M.W., S.U.)
| | - Annalara G Fischer
- From the Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, KY (J.B.M., G.S., A.G.F., M.W., S.U.)
| | - Tyler Weirick
- Cardiovascular Innovation Institute, School of Medicine, University of Louisville, KY (T.W., G.M., S.U.)
| | - Giuseppe Militello
- Cardiovascular Innovation Institute, School of Medicine, University of Louisville, KY (T.W., G.M., S.U.)
| | - Marcin Wysoczynski
- From the Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, KY (J.B.M., G.S., A.G.F., M.W., S.U.)
| | - Anna M Gumpert
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY (A.M.G.)
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Shizuka Uchida
- From the Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, KY (J.B.M., G.S., A.G.F., M.W., S.U.).,Cardiovascular Innovation Institute, School of Medicine, University of Louisville, KY (T.W., G.M., S.U.)
| |
Collapse
|