1
|
Gong Y, Zhao Y, Li Y, Wang Q, Li C, Song K, Liu J, Chen F. Corin in cardiovascular diseases and stroke. Clin Chim Acta 2025; 574:120343. [PMID: 40316193 DOI: 10.1016/j.cca.2025.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Corin is a type II transmembrane serine protease highly expressed in the heart. It plays a critical role in regulating fluid balance and improving cardiac function by converting pro-atrial natriuretic peptide into mature atrial natriuretic peptide. CORIN variants have been identified in patients with hypertension, heart failure, atrial fibrillation, and stroke. In vivo and in vitro, corin deficiency increases blood pressure and impairs cardiac function. Circulating soluble corin appears to have potential as a stable and specific biomarker for the risk prediction and prognostic assessment of cardiovascular diseases (CVDs) and stroke. In this review, we summarize the current knowledge on corin physiology and circulating corin and discuss cardiac corin expression and function in CVDs. In the future, corin-related therapeutic approaches to increase corin activity and raise corin levels may offer new opportunities to treat CVDs.
Collapse
Affiliation(s)
- Yue Gong
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yichang Zhao
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qianqian Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunkai Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Keyi Song
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinqiu Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feifei Chen
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Dong N, Du M, Wu Q. Molecular insights into the corin function at the uteroplacental interface. Placenta 2025:S0143-4004(25)00159-6. [PMID: 40360315 DOI: 10.1016/j.placenta.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
In pregnancy, cell-cell interactions and tissue remodeling are important physiological processes at the uteroplacental interface. To date, molecular mechanisms governing cell activities at the uteroplacental interface are not fully understood. Corin is a proteolytic enzyme responsible for activating atrial natriuretic peptide (ANP), a multifunctional hormone essential for cardiovascular and metabolic homeostasis. Upon progesterone stimulation, corin expression is induced in the uterus via a specific set of transcription factors. Uterine corin activates ANP to enhance decidualization and cell-cell interactions within the vasculature, leading to sequential vascular smooth muscle and endothelial cell death in spiral arteries. These events are crucial for uterine vascular remodeling and trophoblast invasion. Corin also functions in the decidua to regulate macrophage distribution and function in response to placental ischemia. In mice, Corin knockout impairs endometrial decidualization, vascular remodeling, and macrophage function at the uteroplacental interface, causing a preeclampsia (PE)-like phenotype. In humans, deleterious variants and impaired epigenetic modifications in the CORIN gene have been reported in women with PE, indicating that corin deficiency may be a contributing factor in the pathogenesis of PE. In this review, we describe the corin function at the uteroplacental interface and underlying molecular mechanisms. We also discuss potential implications of corin deficiency in pregnancy-associated diseases.
Collapse
Affiliation(s)
- Ningzheng Dong
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Li H, Sun S, Guo W, Wang L, Zhang Z, Zhang Y, Zhang C, Liu M, Zhang S, Niu Y, Dong N, Wu Q. Positively charged cytoplasmic residues in corin prevent signal peptidase cleavage and endoplasmic reticulum retention. Commun Biol 2025; 8:89. [PMID: 39833422 PMCID: PMC11756421 DOI: 10.1038/s42003-025-07545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Positively charged residues are commonly located near the cytoplasm-membrane interface, which is known as the positive-inside rule in membrane topology. The mechanism underlying the function of these charged residues remains poorly understood. Herein, we studied the function of cytoplasmic residues in corin, a type II transmembrane serine protease in cardiovascular biology. We found that the positively charged residue at the cytoplasm-membrane interface of corin was not a primary determinant in membrane topology but probably served as a charge-repulsion mechanism in the endoplasmic reticulum (ER) to prevent interactions with proteins in the ER, including the signal peptidase. Substitution of the positively charged residue with a neutral or acidic residue resulted in corin secretion likely due to signal peptidase cleavage. In signal peptidase-deficient cells, the mutant corin proteins were not secreted but retained in the ER. Similar results were found in the low-density lipoprotein receptor and matriptase-2 that have positively charged residues at and near the cytoplasm-membrane interface. These results provide important insights into the role of the positively charged cytoplasmic residues in mammalian single-pass transmembrane proteins.
Collapse
Affiliation(s)
- Hui Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Wenjun Guo
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Zihao Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Ce Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Pang J, Yang C, Liu J, Wang Z, Tao X, Cao Z. Correlation between vitamin D metabolic pathway-related gene polymorphisms and cardiovascular disease. Food Funct 2024; 15:11342-11364. [PMID: 39494806 DOI: 10.1039/d4fo03234a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Vitamin D plays important roles in various physiological processes such as cardiovascular health, calcium balance regulation, bone health, immune system support, neurological function regulation, muscle function maintenance, and anti-inflammatory effects. Therefore, maintaining its adequate levels is essential for overall health. Genetic polymorphisms in vitamin D metabolic pathways have become a key factor affecting the susceptibility and progression of cardiovascular disease (CVD). This article reviews the relationship between gene polymorphisms in vitamin D metabolic pathways and vitamin D levels or CVD. It is emphasized that the polymorphisms of key genes such as GC, VDR, CYP2R1, CYP24A1 and CYP27B1 are related to the pathogenesis of CVD. These polymorphisms can regulate serum levels of vitamin D, thereby affecting the susceptibility, comorbidities and clinical manifestations of CVD. Despite the progress made, there are still inconsistencies and gaps in the literature. Thus, it is necessary to conduct large-scale, multicenter studies to verify these findings and deepen our understanding of the intricate interactions between gene polymorphisms in vitamin D metabolic pathways and CVD.
Collapse
Affiliation(s)
- Jiao Pang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- College of Life Science, Northwest University, Xi'an City, 710069, China
| | - Chunshuo Yang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Jiaqi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211103, China
| | - Zhilin Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Xueshu Tao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
5
|
Li W, Zhang X, Zhou Z, Guo W, Wang M, Zhou T, Liu M, Wu Q, Dong N. Cardiac corin and atrial natriuretic peptide regulate liver glycogen metabolism and glucose homeostasis. Cardiovasc Diabetol 2024; 23:383. [PMID: 39468553 PMCID: PMC11520433 DOI: 10.1186/s12933-024-02475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Cardiovascular function and metabolic homeostasis are closely linked, but the underlying mechanisms are not fully understood. Corin is a protease that activates atrial natriuretic peptide (ANP), an essential hormone for normal blood pressure and cardiac function. The goal of this study is to investigate a potential corin and ANP function in regulating liver glycogen metabolism and glucose homeostasis. METHODS Liver glycogen and blood glucose levels were analyzed in Corin or Nppa (encoding ANP) knockout (KO) mice. ANP signaling was examined in livers from Corin and Nppa KO mice and in cultured human and mouse hepatocytes by western blotting. RESULTS We found that Corin and Nppa KO mice had reduced liver glycogen contents and increased blood glucose levels. By analyzing conditional KO mice lacking either cardiac or renal Corin, we showed that cardiac corin and ANP act in an endocrine manner to enhance cGMP-protein kinase G (PKG)-AKT-GSK3 signaling in hepatocytes. In cultured hepatocytes, ANP treatment stimulated PKG signaling, glucose uptake, and glycogen production, which could be blocked by small molecule PKG and AKT inhibitors. CONCLUSIONS Our results indicate that corin and ANP are important regulators in liver glycogen metabolism and glucose homeostasis, suggesting that defects in the corin and ANP pathway may contribute to both cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Wenguo Li
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xianrui Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zibin Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjun Guo
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Ningzheng Dong
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Zhou Z, Mao X, Jiang C, Li W, Zhou T, Liu M, Sun S, Wang M, Dong N, Wu Q, Zhou H. Deficiencies in corin and atrial natriuretic peptide-mediated signaling impair endochondral ossification in bone development. Commun Biol 2024; 7:1380. [PMID: 39443661 PMCID: PMC11500007 DOI: 10.1038/s42003-024-07077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Corin is a protease that activates atrial natriuretic peptide (ANP), a hormone in cardiovascular homeostasis. Structurally, ANP is similar to C-type natriuretic peptide (CNP) crucial in bone development. Here, we examine the role of corin and ANP in chondrocyte differentiation and bone formation. We show that in Corin and Nppa (encoding ANP) knockout (KO) mice, chondrocyte differentiation is impaired, resulting in shortened limb long bones. In adult mice, Corin and Nppa deficiency impairs bone density and microarchitecture. Molecular studies in cartilages from newborn Corin and Nppa KO mice and in cultured chondrocytes indicate that corin and ANP act in chondrocytes via cGMP-dependent protein kinase G signaling to inhibit mitogen-activated protein kinase phosphorylation and stimulate glycogen synthase kinase-3β phosphorylation and β-catenin upregulation. These results indicate that corin and ANP signaling regulates chondrocyte differentiation in bone development and homeostasis, suggesting that enhancing ANP signaling may improve bone quality in patients with osteoporosis.
Collapse
Affiliation(s)
- Zibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaoyu Mao
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Chun Jiang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Haibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Gu X, Liu M, Wang M, Wang K, Zhou T, Wu Q, Dong N. Corin deficiency alleviates mucosal lesions in a mouse model of colitis induced by dextran sulfate sodium. Life Sci 2024; 339:122446. [PMID: 38246520 DOI: 10.1016/j.lfs.2024.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
AIMS High dietary salt consumption is a risk factor for inflammatory bowel disease (IBD). Corin is a protease that activates atrial natriuretic peptide (ANP), thereby regulating sodium homeostasis. Corin acts in multiple tissues, including the intestine. In mice, corin deficiency impairs intestinal sodium excretion. This study aims to examine if reduced intestinal sodium excretion alters the pathophysiology of IBD. MAIN METHODS Wild-type (WT), Corin knockout (KO), and Corin kidney conditional KO (kcKO) mice were tested in a colitis model induced by dextran sulfide sodium (DSS). Effects of ANP on DSS-induced colitis were tested in WT and Corin KO mice. Body weight changes in the mice were monitored. Necropsy, histological analysis, and immunostaining studies were conducted to examine colon length and mucosal lesions. Fecal sodium levels were measured. RT-PCR was done to analyze proinflammatory genes in colon samples. KEY FINDINGS DSS-treated Corin KO mice had an ameliorated colitis phenotype with less body weight loss, longer colon lengths, smaller mucosal lesions, lower disease scores, more preserved goblet cells, and suppressed proinflammatory genes in the colon. In longitudinal studies, the DSS-treated Corin KO mice had delayed onset of colon mucosal lesions. ANP administration lessened the colitis in WT, but not Corin KO, mice. Analyses of WT, Corin KO, and Corin kcKO mice indicated that fecal sodium excretion, controlled by intestinal corin, may regulate inflammatory responses in DSS-induced colitis in mice. SIGNIFICANCE Our findings indicate a role of corin in intestinal pathophysiology, suggesting that reduced intestinal sodium level may offer protective benefits against IBD.
Collapse
Affiliation(s)
- Xiabing Gu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Ningzheng Dong
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Zhao Y, Yuan X, Xie Y, Yin X, Liu Y, Sun Y, Gong Y, Liu J, Chen F. Association of Preablation Plasma Corin Levels With Atrial Fibrillation Recurrence After Catheter Ablation: A Prospective Observational Study. J Am Heart Assoc 2024; 13:e031928. [PMID: 38214265 PMCID: PMC10926783 DOI: 10.1161/jaha.123.031928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND We assessed the impact of pre- and postprocedural plasma corin levels on the recurrence of atrial fibrillation (AF) after catheter ablation (CA). METHODS AND RESULTS This prospective, single-center, observational study included patients undergoing their first CA of AF. Corin was measured before and 1 day after CA. The primary end point was recurrent AF between 3 and 12 months after ablation. From April 2019 through May 2021, we analyzed 616 patients with AF (59.09% men) with a mean age of 62.86±9.42 years. Overall, 153 patients (24.84%) experienced recurrent AF. In the recurrence group, the pre- and postprocedure corin concentrations were 539.14 (329.24-702.08) and 607.37 (364.50-753.80) pg/mL, respectively, which were significantly higher than the nonrecurrence group's respective concentrations of 369.05 (186.36-489.28) and 489.12 (315.66-629.05) pg/mL (both P<0.0001). A multivariate Cox regression analysis with confounders found that elevated preablation corin levels were significantly associated with an increased risk of AF recurrence after CA. Receiver operating characteristic curve analysis identified that a preablation corin threshold of >494.85 pg/mL predicted AF recurrence at 1 year. An increase of 1 SD in corin concentrations before CA (264.94 pg/mL) increased the risk of recurrent AF by 54.3% after adjusting for confounding variables (hazard ratio, 1.465 [95% CI, 1.282-1.655]; P<0.0001). CONCLUSIONS Plasma corin levels at baseline is a valuable predictor of AF recurrence after CA, independent of established conventional risk factors. Risk stratification before ablation for AF may be useful in selecting treatment regimens for patients.
Collapse
Affiliation(s)
- Yichang Zhao
- Department of CardiologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xiaoyang Yuan
- Department of Laboratory MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xiaomeng Yin
- Department of CardiologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Ying Liu
- Department of CardiologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yuanjun Sun
- Department of CardiologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yue Gong
- Department of CardiologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jinqiu Liu
- Department of CardiologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Feifei Chen
- Department of CardiologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
9
|
Niu Y, Zhou T, Zhang S, Li W, Wang K, Dong N, Wu Q. Corin deficiency impairs cardiac function in mouse models of heart failure. Front Cardiovasc Med 2023; 10:1164524. [PMID: 37636304 PMCID: PMC10450958 DOI: 10.3389/fcvm.2023.1164524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Corin is a protease in the natriuretic peptide system. Deleterious CORIN variants are associated with hypertension and heart disease. It remains unclear if and to what extent corin deficiency may contribute to heart failure (HF). Methods Corin knockout (KO) mice were used as a model. Cardiac function was assessed by echocardiography and tissue analysis in Corin KO mice at different ages or subjected to transverse aortic constriction (TAC), which increased pressure overload. Heart and lung tissues were analyzed for cardiac hypertrophy and lung edema using wheat germ agglutinin, Sirius red, Masson's trichrome, and Prussian blue staining. Recombinant corin was tested for its effect on cardiac function in the TAC-operated Corin KO mice. Selected gene expression in the heart was examined by RT-PCR. ELISA was used to analyze factors in plasma. Results Corin KO mice had progressive cardiac dysfunction with cardiac hypertrophy and fibrosis after 9 months of age, likely due to chronic hypertension. When Corin KO mice were subjected to TAC at 10-12 weeks of age, cardiac function decreased more rapidly than in similarly treated wild-type mice. When the TAC-operated Corin KO mice were treated with recombinant corin protein, cardiac dysfunction, hypertrophy, and fibrosis were ameliorated. The corin treatment also decreased the gene expression associated with cardiac hypertrophy and fibrosis, increased plasma cGMP levels, lowered plasma levels of N-terminal pro-atrial natriuretic peptide, angiotensin II, and aldosterone, and lessened lung edema in the Corin KO mice subjected to TAC. Conclusion Corin deficiency impairs cardiac function and exacerbates HF development in mice. Corin protein may be used to reduce cardiac hypertrophy and fibrosis, suppress the renin-angiotensin-aldosterone system, and improve cardiac function in HF.
Collapse
Affiliation(s)
- Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Gu X, Wang K, Li W, He M, Zhou T, Liu M, Wu Q, Dong N. Corin Deficiency Diminishes Intestinal Sodium Excretion in Mice. BIOLOGY 2023; 12:945. [PMID: 37508377 PMCID: PMC10376046 DOI: 10.3390/biology12070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Sodium excretion, a critical process in sodium homeostasis, occurs in many tissues, including the kidney and intestine. Unlike in the kidney, the hormonal regulation of intestinal sodium excretion remains unclear. Atrial natriuretic peptide (ANP) is a crucial hormone in renal natriuresis. Corin is a protease critical for ANP activation. Corin and ANP are expressed mainly in the heart. In this study, we investigated corin, ANP, and natriuretic peptide receptor A (Npra) expression in mouse intestines. Corin and ANP expression was co-localized in enteroendocrine cells, whereas Npra expression was on the luminal epithelial cells. In Corin knockout (KO) mice, fecal Na+ and Cl- excretion decreased compared with that in wild-type (WT) mice. Such a decrease was not found in conditional Corin KO mice lacking cardiac corin selectively. In kidney conditional Corin KO mice lacking renal corin, fecal Na+ and Cl- excretion increased, compared to that in WT mice. When WT, Corin KO, and the kidney conditional KO mice were treated with aldosterone, the differences in fecal Na+ and Cl- levels disappeared. These results suggest that intestinal corin may promote fecal sodium excretion in a paracrine mechanism independent of the cardiac corin function. The increased fecal sodium excretion in the kidney conditional Corin KO mice likely reflected an intestinal compensatory response to renal corin deficiency. Our results also suggest that intestinal corin activity may antagonize aldosterone action in the promotion of fecal sodium excretion. These findings help us understand the hormonal mechanism controlling sodium excretion the intestinal tract.
Collapse
Affiliation(s)
- Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| | - Meiling He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| |
Collapse
|
11
|
Wu Q, Li S, Zhang X, Dong N. Type II Transmembrane Serine Proteases as Modulators in Adipose Tissue Phenotype and Function. Biomedicines 2023; 11:1794. [PMID: 37509434 PMCID: PMC10376093 DOI: 10.3390/biomedicines11071794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Adipose tissue is a crucial organ in energy metabolism and thermoregulation. Adipose tissue phenotype is controlled by various signaling mechanisms under pathophysiological conditions. Type II transmembrane serine proteases (TTSPs) are a group of trypsin-like enzymes anchoring on the cell surface. These proteases act in diverse tissues to regulate physiological processes, such as food digestion, salt-water balance, iron metabolism, epithelial integrity, and auditory nerve development. More recently, several members of the TTSP family, namely, hepsin, matriptase-2, and corin, have been shown to play a role in regulating lipid metabolism, adipose tissue phenotype, and thermogenesis, via direct growth factor activation or indirect hormonal mechanisms. In mice, hepsin deficiency increases adipose browning and protects from high-fat diet-induced hyperglycemia, hyperlipidemia, and obesity. Similarly, matriptase-2 deficiency increases fat lipolysis and reduces obesity and hepatic steatosis in high-fat diet-fed mice. In contrast, corin deficiency increases white adipose weights and cell sizes, suppresses adipocyte browning and thermogenic responses, and causes cold intolerance in mice. These findings highlight an important role of TTSPs in modifying cellular phenotype and function in adipose tissue. In this review, we provide a brief description about TTSPs and discuss recent findings regarding the role of hepsin, matriptase-2, and corin in regulating adipose tissue phenotype, energy metabolism, and thermogenic responses.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Shuo Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xianrui Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| |
Collapse
|
12
|
Zhou T, Zhang S, Du C, Wang K, Gu X, Sun S, Zhang X, Niu Y, Wang C, Liu M, Dong N, Wu Q. Renal Corin Is Essential for Normal Blood Pressure and Sodium Homeostasis. Int J Mol Sci 2022; 23:ijms231911251. [PMID: 36232551 PMCID: PMC9570390 DOI: 10.3390/ijms231911251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Atrial natriuretic peptide (ANP)-mediated natriuresis is known as a cardiac endocrine function in sodium and body fluid homeostasis. Corin is a protease essential for ANP activation. Here, we studied the role of renal corin in regulating salt excretion and blood pressure. We created corin conditional knockout (cKO), in which the Corin gene was selectively disrupted in the kidney (kcKO) or heart (hcKO). We examined the blood pressure, urinary Na+ and Cl− excretion, and cardiac hypertrophy in wild-type, corin global KO, kcKO, and hcKO mice fed normal- and high-salt diets. We found that on a normal-salt diet (0.3% NaCl), corin kcKO and hcKO mice had increased blood pressure, indicating that both renal and cardiac corin is necessary for normal blood pressure in mice. On a high-salt diet (4% NaCl), reduced urinary Na+ and Cl− excretion, increased body weight, salt-exacerbated hypertension, and cardiac hypertrophy were observed in corin kcKO mice. In contrast, impaired urinary Na+ and Cl− excretion and salt-exacerbated hypertension were not observed in corin hcKO mice. These results indicated that renal corin function is important in enhancing natriuresis upon high salt intakes and that this function cannot be compensated by the cardiac corin function in mice.
Collapse
Affiliation(s)
- Tiantian Zhou
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Shengnan Zhang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Chunyu Du
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Kun Wang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiabing Gu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Shijin Sun
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Xianrui Zhang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Yayan Niu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Can Wang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Meng Liu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
- Correspondence: (N.D.); (Q.W.)
| | - Qingyu Wu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Correspondence: (N.D.); (Q.W.)
| |
Collapse
|
13
|
Zhang X, Li W, Zhou T, Liu M, Wu Q, Dong N. Corin Deficiency Alters Adipose Tissue Phenotype and Impairs Thermogenesis in Mice. BIOLOGY 2022; 11:biology11081101. [PMID: 35892957 PMCID: PMC9329919 DOI: 10.3390/biology11081101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Atrial natriuretic peptide (ANP) is a key regulator in body fluid balance and cardiovascular biology. In addition to its role in enhancing natriuresis and vasodilation, ANP increases lipolysis and thermogenesis in adipose tissue. Corin is a protease responsible for ANP activation. It remains unknown if corin has a role in regulating adipose tissue function. Here, we examined adipose tissue morphology and function in corin knockout (KO) mice. We observed increased weights and cell sizes in white adipose tissue (WAT), decreased levels of uncoupling protein 1 (Ucp1), a brown adipocyte marker in WAT and brown adipose tissue (BAT), and suppressed thermogenic gene expression in BAT from corin KO mice. At regular room temperature, corin KO and wild-type mice had similar metabolic rates. Upon cold exposure at 4 °C, corin KO mice exhibited impaired thermogenic responses and developed hypothermia. In BAT from corin KO mice, the signaling pathway of p38 mitogen-activated protein kinase, peroxisome proliferator-activated receptor c coactivator 1a, and Ucp1 was impaired. In cell culture, ANP treatment increased Ucp1 expression in BAT-derived adipocytes from corin KO mice. These data indicate that corin mediated-ANP activation is an important hormonal mechanism in regulating adipose tissue function and body temperature upon cold exposure in mice.
Collapse
Affiliation(s)
- Xianrui Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- MOH Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- MOH Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
| | - Meng Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- Correspondence: (Q.W.); (N.D.)
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- MOH Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Correspondence: (Q.W.); (N.D.)
| |
Collapse
|
14
|
Corin: A Key Mediator in Sodium Homeostasis, Vascular Remodeling, and Heart Failure. BIOLOGY 2022; 11:biology11050717. [PMID: 35625445 PMCID: PMC9138375 DOI: 10.3390/biology11050717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Atrial natriuretic peptide (ANP) is an important hormone that regulates many physiological and pathological processes, including electrolyte and body fluid balance, blood volume and pressure, cardiac channel activity and function, inflammatory response, lipid metabolism, and vascular remodeling. Corin is a transmembrane serine protease that activates ANP. Variants in the CORIN gene are associated with cardiovascular disease, including hypertension, cardiac hypertrophy, atrial fibrillation, heart failure, and preeclampsia. The current data indicate a key role of corin-mediated ANP production and signaling in the maintenance of cardiovascular homeostasis. In this review, we discuss the latest findings regarding the molecular and cellular mechanisms underlying the role of corin in sodium homeostasis, uterine spiral artery remodeling, and heart failure. Abstract Atrial natriuretic peptide (ANP) is a crucial element of the cardiac endocrine function that promotes natriuresis, diuresis, and vasodilation, thereby protecting normal blood pressure and cardiac function. Corin is a type II transmembrane serine protease that is highly expressed in the heart, where it converts the ANP precursor to mature ANP. Corin deficiency prevents ANP activation and causes hypertension and heart disease. In addition to the heart, corin is expressed in other tissues, including those of the kidney, skin, and uterus, where corin-mediated ANP production and signaling act locally to promote sodium excretion and vascular remodeling. These results indicate that corin and ANP function in many tissues via endocrine and autocrine mechanisms. In heart failure patients, impaired natriuretic peptide processing is a common pathological mechanism that contributes to sodium and body fluid retention. In this review, we discuss most recent findings regarding the role of corin in non-cardiac tissues, including the kidney and skin, in regulating sodium homeostasis and body fluid excretion. Moreover, we describe the molecular mechanisms underlying corin and ANP function in supporting orderly cellular events in uterine spiral artery remodeling. Finally, we assess the potential of corin-based approaches to enhance natriuretic peptide production and activity as a treatment of heart failure.
Collapse
|
15
|
The Overexpression of TOB1 Induces Autophagy in Gastric Cancer Cells by Secreting Exosomes. DISEASE MARKERS 2022; 2022:7925097. [PMID: 35465266 PMCID: PMC9019440 DOI: 10.1155/2022/7925097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
We previously confirmed that transducer of ERBB2, 1 (TOB1) gene, can induce autophagy in gastric cancer cells. Studies have shown the biogenesis of exosomes overlaps with different autophagy processes, which helps to maintain the self-renewal and homeostasis of body cells. This study is aimed at verifying whether overexpressing TOB1 induces autophagy by secreting exosomes in gastric cancer cells and its underlying mechanisms. Differential ultracentrifugation was used to extracted the exosomes from the culture medium of gastric cancer cell line AGS-TOB1 ectopically overexpressing TOB1 (exo-AGS-TOB1, experimental group) and AGS-empty-vector cell line with low expression of endogenous TOB1 (exo-AGS-Vector, control group). Exosomal markers CD9 and TSG101 were determined in both the cell supernatants of exo-AGS-TOB1 and exo-AGS-Vector by Western blot. Under the transmission electron microscope (TEM), the exosomes were round and saucer-like vesicles with double-layer membrane structure, and the vesicles showed different translucency due to different contents. The peak size of exosomes detected by nanoparticle tracking analysis (NTA) was about 100 nm. When the exosomes of exo-AGS-TOB1 and exo-AGS-Vector were cocultured with TOB1 knockdown gastric cancer cell line HGC-27-TOB1-6E12 for 48 hours, the conversion of autophagy-related protein LC3-I to LC3-II in HGC-27-TOB1-6E12 gastric cancer cells cocultured with exo-AGS-TOB1 was significantly higher than that in the control group, and the ratio of LC3-II/LC3-I was statistically different (P < 0.05). More autophagosomes in HGC-27-TOB1-6E12 cells cocultured with exo-AGS-TOB1 for 48 hours were observed under TEM, while fewer autophagosomes were found in the control group. Lastly, miRNAs were differentially expressed by cell supernatant-exosomal whole transcriptome sequencing. Thus, our results provide new insights into TOB1-induced autophagy in gastric cancer.
Collapse
|
16
|
Transcriptome analysis to reveal the mechanism of the effect of Echinops latifolius polysaccharide B on palmitate-induced insulin-resistant. Biomed Pharmacother 2021; 143:112203. [PMID: 34563954 DOI: 10.1016/j.biopha.2021.112203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
Hepatic insulin resistance is a crucial pathological process in type 2 diabetes mellitus (T2DM) associated with visceral adiposity and metabolic disorders. Echinops latifolius polysaccharide B (ETPB), a polysaccharide extracted from Echinops latifolius Tausch, increases insulin sensitivity in the high-fat diet-fed and STZ induced SD rat model and even prevented hepatic metabolic disorders. However, the mechanism by which ETPB improves carbohydrate and lipid metabolisms in the liver with insulin resistance remains largely unknown. In the present work, an lnsulin resistance cell model (IR-HepG2) was established. Glucose consumption, glycogen content, triglycerides (TG), and free fatty acids (FFAs) levels were detected. The result revealed that the intervention of ETPB significantly increased glucose consumption and glycogen synthesis and reduced FFAs and TG production in IR-HepG2 cells. Further, we also employed RNA-seq to identify differentially expressed miRNAs (DEMs) and mRNAs (DEGs) with a fold change of ≥ 1.5 and p-value of <0.05. Finally, we identified 1028, 682, 382, 1614, 519 and 825 DEGs, and 71, 113, 94, 68, 52 and 38 DEMs in different comparisons, respectively. Based on a short time-series expression miner (STEM) analysis, six profiles were chosen for further analysis. Seventeen insulin resistance-associated dynamic DEGs were identified during ETPB stimulation. Based on these dynamic DEGs, the related miRNAs were acquired from DEMs, and an integrated miRNA-mRNA regulatory network was subsequently constructed. Besides, some DEGs and DEMs were validated using qPCR. This study provides transcriptomic evidence of the molecular mechanism involved in HepG2 insulin resistance, leading to the discovery of miRNA-based target therapies for ETPB.
Collapse
|