1
|
Wei Y, Luo Q, Li X, Liu X, Yang Z, Tuo Q, Chen W. Unraveling LncRNA GAS5 in Atherosclerosis: Mechanistic Insights and Clinical Translation. BIOLOGY 2025; 14:697. [PMID: 40563948 PMCID: PMC12189391 DOI: 10.3390/biology14060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2025] [Revised: 06/10/2025] [Accepted: 06/11/2025] [Indexed: 06/28/2025]
Abstract
Atherosclerosis, a chronic inflammatory disease driving cardiovascular events, involves complex molecular networks where long non-coding RNAs (lncRNAs) are key regulators. This review synthesizes current knowledge on lncRNA Growth Arrest-Specific 5 (GAS5) in atherosclerosis, covering its expression, multifaceted roles in vascular cells, and molecular mechanisms. GAS5 is significantly upregulated in atherosclerotic plaques, exerting complex, cell-specific effects on vascular smooth muscle cells, macrophages, and endothelial cells. GAS5 modulates crucial pathophysiological processes like cell proliferation, apoptosis, inflammation, lipid metabolism, and foam cell formation, primarily by acting as a competing endogenous RNA (ceRNA) and through direct protein interactions. While promising as a biomarker, circulating GAS5 levels require further validation. Therapeutic strategies targeting GAS5, including antisense oligonucleotides (ASO) and small-molecule compounds, are under investigation. In conclusion, lncRNA GAS5 is a critical regulatory node in atherosclerosis pathobiology, offering significant opportunities for novel diagnostic and therapeutic interventions. Further research is vital to elucidate its intricate roles and translate these findings into clinical applications for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yu Wei
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.W.); (Q.L.); (X.L.); (X.L.); (Z.Y.)
| | - Quanye Luo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.W.); (Q.L.); (X.L.); (X.L.); (Z.Y.)
| | - Xiang Li
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.W.); (Q.L.); (X.L.); (X.L.); (Z.Y.)
| | - Xi Liu
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.W.); (Q.L.); (X.L.); (X.L.); (Z.Y.)
| | - Zheyu Yang
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.W.); (Q.L.); (X.L.); (X.L.); (Z.Y.)
| | - Qinhui Tuo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.W.); (Q.L.); (X.L.); (X.L.); (Z.Y.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.W.); (Q.L.); (X.L.); (X.L.); (Z.Y.)
- Basic Research Center of Integrated Chinese and Western Medicine on Prevention and Treatment of Vascular Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
2
|
Cheng H, Wu X, Li J, Wang L. CircRNA Networks in CAD: Multi-Cellular Mechanisms and Clinical Potential. Int J Gen Med 2025; 18:3129-3150. [PMID: 40529348 PMCID: PMC12170827 DOI: 10.2147/ijgm.s524189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/26/2025] [Indexed: 06/20/2025] Open
Abstract
Coronary artery disease (CAD), is a global cardiovascular disease that is characterized by myocardial ischemia and hypoxia caused by coronary artery occlusion. Circular RNAs (CircRNAs) is a particular kind of endogenous non-coding RNA, which can affect the occurrence and development of CAD. Concurrently, several circRNAs display stable persistence in CAD patients, attributable to their exceptional exonuclease resistance, thereby harboring the capacity to evolve into a biomarker for CAD diagnosis and prognosis. This article endeavors to clarify the pivotal role of circRNAs in the intricate pathophysiological processes underlying CAD patients or CAD disease models based on their unique biological characteristics and functionalities, and further discuss their prospects in clinical applications of CAD.
Collapse
Affiliation(s)
- Huan Cheng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, People’s Republic of China
| | - Xinyu Wu
- Department of Cardiology, Zhumadian City Central Hospital, Zhumadian, Henan, 463000, People’s Republic of China
| | - Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, People’s Republic of China
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, People’s Republic of China
| |
Collapse
|
3
|
Jiang Y, Zhao Y, Jia BY, Zhong SY, Cheng JF, Yu ZQ. LncRNA MEG3 independently collaborates with lncRNA TUG1 to prevent cholesterol efflux in ox-LDL-induced human umbilical vein endothelial cells. Mol Biol Rep 2025; 52:433. [PMID: 40293536 DOI: 10.1007/s11033-025-10516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Maternally expressed gene 3 (MEG3) is an abnormal methylation gene and low expression of lncRNA MEG3 have been observed in coronary heart disease (CHD). This study aims to investigate whether DNA methylation mediates the abnormal expression of lncRNA MEG3 and to explore the underlying mechanism by which lncRNA MEG3 regulates cholesterol efflux. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot were used to assess molecular expressions. Oxidized low-density lipoprotein (Ox-LDL) treated human umbilical vein endothelial cells (HUVECs) were established as an in vitro model. Methylation-specific PCR was used to evaluate the methylation level of MEG3. BODIPY-cholesterol assay was performed to examine intracellular cholesterol efflux. Luciferase reporter gene assay was used to verify the interaction between miR-181a-5p and MEG3/ABCA1. RESULTS LncRNA MEG3 was downregulated, while taurine upregulated gene 1 (TUG1) was upregulated in patients with CHD. Besides, ox-LDL treatment increased DNMT3B expression, decreased lncRNA MEG3 expression and elevated the level of MEG3 methylation in HUVECs. Further experiments showed that DNMT3B overexpression reduced lncRNA MEG3 expression and enhanced MEG3 methylation. Additionally, silencing MEG3 decreased ABCA1 expression to prevent cholesterol efflux in HUVECs. The interaction between miR-181a-5p and MEG3/ABCA1 were also confirmed. Rescue experiments suggested that MEG3 knockdown downregulated ABCA1 expression via miR-181a-5p, thereby preventing cholesterol efflux in HUVECs. Furthermore, the results showed that MEG3 collaborated with TUG1 in an independent manner to block ABCA1 mediated-cholesterol efflux in HUVECs. CONCLUSION Downregulation of lncRNA MEG3, mediated by DNMT3B, prevents cholesterol efflux through miR-181a-5p/ABCA1 axis in ox-LDL-induced HUVECs. Moreover, MEG3 collaborated with TUG1 in an independent manner to prevent ABCA1 mediated-cholesterol efflux in HUVECs.
Collapse
Affiliation(s)
- Yong Jiang
- School of Laboratory Medicine, Jilin Medical University, 5 Jilin Street, Jilin, Jilin Province, 132013, China.
| | - Ying Zhao
- Department of Cardiology, Jilin Central Hospital, Jilin, 132011, China
| | - Bo-Yan Jia
- School of Laboratory Medicine, Jilin Medical University, 5 Jilin Street, Jilin, Jilin Province, 132013, China
| | - Sheng-Yu Zhong
- Department of Cardiology, Jilin Central Hospital, Jilin, 132011, China
| | - Jian-Feng Cheng
- School of Clinical Medicine, Jilin Medical University, Jilin, 132013, China
| | - Zi-Qi Yu
- School of Laboratory Medicine, Jilin Medical University, 5 Jilin Street, Jilin, Jilin Province, 132013, China
| |
Collapse
|
4
|
Zhao J, Gui Y, Wu W, Li X, Wang L, Wang H, Luo Y, Zhou G, Yuan C. The function of long non-coding RNA IFNG-AS1 in autoimmune diseases. Hum Cell 2024; 37:1325-1335. [PMID: 39004663 DOI: 10.1007/s13577-024-01103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The prevalence of autoimmune diseases ranks as the third most common disease category globally, following cancer and heart disease. Numerous studies indicate that long non-coding RNA (lncRNA) plays a pivotal role in regulating human growth, development, and the pathogenesis of various diseases. It is more than 200 nucleotides in length and is mostly involve in the regulation of gene expression. Furthermore, lncRNAs are crucial in the development and activation of immune cells, with an expanding body of research exploring their association with autoimmune disorders in humans. LncRNA Ifng antisense RNA 1 (IFNG-AS1), a key regulatory factor in the immune system, also named NeST or TMEVPG1, is proximally located to IFNG and participates in the regulation of it. The dysregulation of IFNG-AS1 is implicated in the pathogenesis of several autoimmune diseases. This study examines the role and mechanism of IFNG-AS1 in various autoimmune diseases and considers its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiale Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Yibei Gui
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Xueqing Li
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Lijun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hailin Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Yiyang Luo
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China.
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
5
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska A, Olszewski R, Rysz J. The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9244. [PMID: 39273193 PMCID: PMC11395304 DOI: 10.3390/ijms25179244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024] Open
Abstract
Lipid disorders increase the risk for the development of cardiometabolic disorders, including type 2 diabetes, atherosclerosis, and cardiovascular disease. Lipids levels, apart from diet, smoking, obesity, alcohol consumption, and lack of exercise, are also influenced by genetic factors. Recent studies suggested the role of long noncoding RNAs (lncRNAs) in the regulation of lipid formation and metabolism. Despite their lack of protein-coding capacity, lncRNAs are crucial regulators of various physiological and pathological processes since they affect the transcription and epigenetic chromatin remodelling. LncRNAs act as molecular signal, scaffold, decoy, enhancer, and guide molecules. This review summarises available data concerning the impact of lncRNAs on lipid levels and metabolism, as well as impact on cardiovascular disease risk. This relationship is significant because altered lipid metabolism is a well-known risk factor for cardiovascular diseases, and lncRNAs may play a crucial regulatory role. Understanding these mechanisms could pave the way for new therapeutic strategies to mitigate cardiovascular disease risk through targeted modulation of lncRNAs. The identification of dysregulated lncRNAs may pose promising candidates for therapeutic interventions, since strategies enabling the restoration of their levels could offer an effective means to impede disease progression without disrupting normal biological functions. LncRNAs may also serve as valuable biomarker candidates for various pathological states, including cardiovascular disease. However, still much remains unknown about the functions of most lncRNAs, thus extensive studies are necessary elucidate their roles in physiology, development, and disease.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Aleksandra Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Robert Olszewski
- Department of Gerontology, Public Health and Didactics, National Institute of Geriatrics, Rheumatology and Rehabilitation in Warsaw, 02-637 Warsaw, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
6
|
Abbas M, Goodney G, Vargas JD, Gaye A. Transcriptome Study of 2 Black Cohorts Reveals cis Long Noncoding RNAs Associated With Hypertension-Related mRNAs. J Am Heart Assoc 2024; 13:e034417. [PMID: 38818927 PMCID: PMC11255619 DOI: 10.1161/jaha.124.034417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have emerged as critical regulators of the expression of genes involved in cardiovascular diseases. This project aims to identify circulating lncRNAs associated with protein-coding mRNAs differentially expressed between hypertensive and normotensive individuals and establish their link with hypertension. METHODS AND RESULTS The analyses were conducted in 3 main steps: (1) an unbiased whole blood transcriptome-wide analysis was conducted to identify and replicate protein-coding genes differentially expressed by hypertension status in 497 and 179 Black individuals from the GENE-FORECAST (Genomics, Environmental Factors and the Social Determinants of Cardiovascular Disease in African-Americans Study) and MH-GRID (Minority Health Genomics and Translational Research Bio-Repository Database) studies, respectively. Subsequently, (2) proximal lncRNAs, termed cis lncRNA quantitative trait loci, associated with each mRNA were identified in the GENE-FORECAST study and replicated in the MH-GRID study. Finally, (3) the lncRNA quantitative trait loci were used as predictors in a random forest model to predict hypertension in both data sets. A total of 129 mRNAs were significantly differentially expressed between normotensive and hypertensive individuals in both data sets. The lncRNA-mRNA association analysis revealed 249 cis lncRNA quantitative trait loci associated with 102 mRNAs, including VAMP2 (vesicle-associated membrane protein 2), mitogen-activated protein kinase kinase 3, CCAAT enhancer binding protein beta, and lymphocyte antigen 6 complex, locus E. The 249 lncRNA quantitative trait loci predicted hypertension with an area under the curve of 0.79 and 0.71 in GENE-FORECAST and MH-GRID studies, respectively. CONCLUSIONS This study leveraged a significant sample of Black individuals, a population facing a disproportionate burden of hypertension. The analyses unveiled a total of 271 lncRNA-mRNA relationships involving mRNAs that play critical roles in vascular pathways relevant to blood pressure regulation. The compelling findings, consistent across 2 independent data sets, establish a reliable foundation for designing in vitro/in vivo experiments.
Collapse
Affiliation(s)
- Malak Abbas
- National Human Genome Research Institute, National Institutes of HealthBethesdaMD
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of HealthBethesdaMD
| | | | - Amadou Gaye
- National Human Genome Research Institute, National Institutes of HealthBethesdaMD
| |
Collapse
|
7
|
Xie F, Wang D, Cheng M. CDKN2B-AS1 may act as miR-92a-3p sponge in coronary artery disease. Minerva Cardiol Angiol 2024; 72:125-133. [PMID: 38231078 DOI: 10.23736/s2724-5683.23.06441-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
BACKGROUND LncRNAs, miRNAs, and the sponge effect between them exert diverse biological influences on the pathogenesis and progression of coronary artery disease (CAD), thus necessitating an exploration of the lncRNA-miRNA-gene regulatory network in CAD. METHODS Expression profile GSE98583 was obtained from NCBI, containing the data of 12 CAD patients and 6 controls. Limma package was utilized to determine the differentially expressed genes (DEGs). Functional enrichment analysis was performed by DAVID. The CAD-related miRNA-DEG associations were retrieved via HMDD and miRTarBase, and the CAD-related lncRNA-miRNA associations were retrieved via LncRNADisease and starBase. The CAD-related lncRNA-miRNA-DEG regulatory network was constructed by combining these associations. The dual luciferase test was carried out to validate the connections among lncRNA, miRNA, and gene. RESULTS Overall, 534 DEGs were identified between CAD samples and controls, including 243 up-regulated and 291 down-regulated, and were enriched in various gene ontology biological processes and KEGG pathways. The CAD-related miRNAs targeting DEGs included hsa-miR-206, has-miR-320b, has-miR-4513, has-miR-765, and has-miR-92a-3p, and hsa-miR-92a-3p regulated the most DEGs. In the lncRNA-miRNA associations, only CDKN2B-AS1 regulated the CAD-related miRNA, hsa-miR-92a-3p, which was validated using the dual luciferase test. CONCLUSIONS CDKN2B-AS1 may act as an hsa-miR-92a-3p sponge to regulate the downstream DEGs in CAD. CDKN2B-AS1/ hsa-miR-92a-3p/GATA2 might be a novel mechanism for CAD.
Collapse
Affiliation(s)
- Fei Xie
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Dan Wang
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Ming Cheng
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China -
| |
Collapse
|
8
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
9
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
10
|
Huang K, Ma T, Li Q, Zhong Z, Zhou Y, Zhang W, Qin T, Tang S, Zhong J, Lu S. CYP4V2 rs56413992 C > T was associated with the risk of coronary heart disease in the Chinese Han population: a case-control study. BMC Med Genomics 2023; 16:322. [PMID: 38066650 PMCID: PMC10709878 DOI: 10.1186/s12920-023-01737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE The research aimed to detect the association between single nucleotide polymorphisms (SNPs) in CYP4V2 gene and coronary heart disease (CHD) risk. METHODS This case-control study included 487 CHD subjects and 487 healthy individuals. Logistic regression was performed to analyze the connection between five SNPs in CYP4V2 (rs1398007, rs13146272, rs3736455, rs1053094, and rs56413992) and CHD risk, and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the connection. RESULTS As a result, we found that rs56413992 T allele (OR = 1.36, 95% CI = 1.09-1.70, p = 0.007) and CT genotype (OR = 1.40, 95% CI = 1.06-1.83, p = 0.017) were significantly associated with an increased risk of CHD in the overall analysis. Precisely, rs56413992 was linked to an elevated risk of CHD in people aged > 60, males, smokers and drinkers. The study also indicated that rs1398007 was linked to an increased CHD risk in drinkers. In addition, rs1053094 was correlated with a decreased risk of CHD complicated with diabetes mellitus (DM), and rs1398007 was correlated with a decreased risk of CHD complicated with hypertension (HTN). CONCLUSION This study was the first to experimentally demonstrate that CYP4V2 rs56413992 was associated with the risk of CHD, which will provide a certain reference for revealing the pathogenesis of CHD.
Collapse
Affiliation(s)
- Kang Huang
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haikou, Hainan, China
| | - Tianyi Ma
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haikou, Hainan, China
| | - Qiang Li
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haikou, Hainan, China
| | - Zanrui Zhong
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haikou, Hainan, China
| | - Yilei Zhou
- School of Medicine, Jingchu University of Technology, Jingmen, Hubei, China
| | - Wei Zhang
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haikou, Hainan, China
| | - Ting Qin
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haikou, Hainan, China
| | - Shilin Tang
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haikou, Hainan, China
| | - Jianghua Zhong
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haikou, Hainan, China.
| | - Shijuan Lu
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haikou, Hainan, China.
| |
Collapse
|
11
|
Dergunova LV, Vinogradina MA, Filippenkov IB, Limborska SA, Dergunov AD. Circular RNAs Variously Participate in Coronary Atherogenesis. Curr Issues Mol Biol 2023; 45:6682-6700. [PMID: 37623241 PMCID: PMC10453518 DOI: 10.3390/cimb45080422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Over the past decade, numerous studies have shown that circular RNAs (circRNAs) play a significant role in coronary artery atherogenesis and other cardiovascular diseases. They belong to the class of non-coding RNAs and arise as a result of non-canonical splicing of premature RNA, which results in the formation of closed single-stranded circRNA molecules that lack 5'-end caps and 3'-end poly(A) tails. circRNAs have broad post-transcriptional regulatory activity. Acting as a sponge for miRNAs, circRNAs compete with mRNAs for binding to miRNAs, acting as competing endogenous RNAs. Numerous circRNAs are involved in the circRNA-miRNA-mRNA regulatory axes associated with the pathogenesis of cardiomyopathy, chronic heart failure, hypertension, atherosclerosis, and coronary artery disease. Recent studies have shown that сirc_0001445, circ_0000345, circ_0093887, сircSmoc1-2, and circ_0003423 are involved in the pathogenesis of coronary artery disease (CAD) with an atheroprotective effect, while circ_0002984, circ_0029589, circ_0124644, circ_0091822, and circ_0050486 possess a proatherogenic effect. With their high resistance to endonucleases, circRNAs are promising diagnostic biomarkers and therapeutic targets. This review aims to provide updated information on the involvement of atherogenesis-related circRNAs in the pathogenesis of CAD. We also discuss the main modern approaches to detecting and studying circRNA-miRNA-mRNA interactions, as well as the prospects for using circRNAs as biomarkers and therapeutic targets for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Liudmila V. Dergunova
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Margarita A. Vinogradina
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Ivan B. Filippenkov
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Svetlana A. Limborska
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky Street 10, Moscow 101990, Russia;
| |
Collapse
|
12
|
Petkovic A, Erceg S, Munjas J, Ninic A, Vladimirov S, Davidovic A, Vukmirovic L, Milanov M, Cvijanovic D, Mitic T, Sopic M. LncRNAs as Regulators of Atherosclerotic Plaque Stability. Cells 2023; 12:1832. [PMID: 37508497 PMCID: PMC10378138 DOI: 10.3390/cells12141832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Current clinical data show that, despite constant efforts to develop novel therapies and clinical approaches, atherosclerotic cardiovascular diseases (ASCVD) are still one of the leading causes of death worldwide. Advanced and unstable atherosclerotic plaques most often trigger acute coronary events that can lead to fatal outcomes. However, despite the fact that different plaque phenotypes may require different treatments, current approaches to prognosis, diagnosis, and classification of acute coronary syndrome do not consider the diversity of plaque phenotypes. Long non-coding RNAs (lncRNAs) represent an important class of molecules that are implicated in epigenetic control of numerous cellular processes. Here we review the latest knowledge about lncRNAs' influence on plaque development and stability through regulation of immune response, lipid metabolism, extracellular matrix remodelling, endothelial cell function, and vascular smooth muscle function, with special emphasis on pro-atherogenic and anti-atherogenic lncRNA functions. In addition, we present current challenges in the research of lncRNAs' role in atherosclerosis and translation of the findings from animal models to humans. Finally, we present the directions for future lncRNA-oriented research, which may ultimately result in patient-oriented therapeutic strategies for ASCVD.
Collapse
Affiliation(s)
- Aleksa Petkovic
- Clinical-Hospital Centre "Dr Dragiša Mišović-Dedinje", 11000 Belgrade, Serbia
| | - Sanja Erceg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Davidovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
- Department for Internal Medicine, Faculty of Dentistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Luka Vukmirovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Marko Milanov
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Dane Cvijanovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Tijana Mitic
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Wu X, Li J, Sun G, Yang J, Peng Y, Bai X, Wang L. Role of LncRNAs in the Pathogenesis of Coronary Artery Disease. Rev Cardiovasc Med 2023; 24:96. [PMID: 39076276 PMCID: PMC11273030 DOI: 10.31083/j.rcm2404096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 07/31/2024] Open
Abstract
Coronary artery disease (CAD), caused by coronary artery occlusion, is a common cardiovascular disease worldwide. Long non-coding RNAs (lncRNAs) are implicated in the regulation of endothelial cell injury, angiogenesis, plaque formation, and other pathological mechanisms in CAD by acting on different cell types. Some lncRNAs are significantly upregulated in CAD patients; however, other lncRNAs are significantly downregulated. Differential expression of lncRNAs in CAD patients enables them to be exploited as potential biomarkers to evaluate disease progression and diagnosis/prognosis in CAD patients. In this study, we reviewed the role of lncRNAs in the development of different clinical subtypes of CAD.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Guihu Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Xiangfeng Bai
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| |
Collapse
|
14
|
Abdallah HY, Fareed A, Abdelmaogood AKK, Allam S, Abdelgawad M, Deen LATE. Introducing Circulating Vasculature-Related Transcripts as Biomarkers in Coronary Artery Disease. Mol Diagn Ther 2023; 27:243-259. [PMID: 36538237 PMCID: PMC10008268 DOI: 10.1007/s40291-022-00622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atherosclerotic plaque is considered the hallmark of atherosclerotic lesions in coronary atherosclerosis (CAS), the primary pathogenesis in coronary artery disease (CAD), which develops and progresses through a complex interplay between immune cells, vascular cells, and endothelial shear stresses. Early diagnosis of CAS is critical for avoiding plaque rupture and sudden death. Therefore, identifying new CAD biomarkers linked to vessel wall functions, such as RNA molecules with their distinct signature, is a promising development for these patients. With this rationale, the present study investigated the expression level of the vascular-related RNA transcripts (lncRNA ANRIL, miRNA-126-5p, CDK4, CDK6, TGF-β, E-cadherin, and TNF-α) implicated in the cellular vascular function, proliferation, and inflammatory processes. METHODS A case-control study design with a total of 180 subjects classified participants into two groups; CAD and control groups. The relative expression levels of the seven transcripts under study-selected using online bioinformatics tools and current literature-were assessed in the plasma of all study participants using RT-qPCR. Their predictive significance testing, scoring of disease prioritization, enrichment analysis, and the miRNA-mRNA regulatory network was investigated. RESULTS The relative expression levels of all seven of the circulating vascular-related transcripts under study were statistically significant between CAD patients and controls. Receiver operating characteristic (ROC) analysis results indicated the statistical significance of all the transcripts under study with CDK4 showing the highest area under the curve (AUC) equivalent to 0.91, followed by E-cadherin (0.90), miRNA-126-5p (0.83), ANRIL (0.82), TNF-α (0.63), TGF-β (0.62), and CDK6 (0.59), in descending order. A strong association was detected between most of the transcripts studied in CAD patients with a significant Spearman's correlation coefficient with a two-tailed significance of p < 0.001. Network analysis revealed a strong relationship between the five circulating vasculature transcripts studied and their target miRNAs and miR-126-5p, but not for ANRIL. CONCLUSION The seven circulating vascular-related RNA transcripts under study could serve as potential CAD biomarkers, reflecting the cellular vascular function, proliferation, and inflammatory processes in CAD patients. Therefore, blood transcriptome analysis opens new frontiers for the non-invasive diagnosis of CAD.
Collapse
Affiliation(s)
- Hoda Y Abdallah
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt. .,Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Ahmed Fareed
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asmaa K K Abdelmaogood
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sahar Allam
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Loaa A Tag El Deen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
15
|
Ilieva M, Uchida S. Potential Involvement of LncRNAs in Cardiometabolic Diseases. Genes (Basel) 2023; 14:213. [PMID: 36672953 PMCID: PMC9858747 DOI: 10.3390/genes14010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a major cause of mortality around the world. As such, there is an urgent need to understand the pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs). Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may influence cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark or
| |
Collapse
|
16
|
Li J, Wu X, Ma H, Sun G, Ding P, Lu S, Zhang L, Yang P, Peng Y, Fu J, Wang L. New developments in non-exosomal and exosomal ncRNAs in coronary artery disease. Epigenomics 2022; 14:1355-1372. [PMID: 36514887 DOI: 10.2217/epi-2022-0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim & methods: Non-exosomal and exosomal ncRNAs have been reported to be involved in the regulation of coronary artery disease (CAD). Therefore, to explore the biological effects of non-exosomal/exosomal ncRNAs in CAD, the authors searched for studies published in the last 3 years on these ncRNAs in CAD and summarized their functions and mechanisms. Results: The authors summarized 120 non-exosomal ncRNAs capable of regulating CAD progression. In clinical studies, 47 non-exosomal and nine exosomal ncRNAs were able to serve as biomarkers for the diagnosis of CAD. Conclusion: Non-exosomal/exosomal ncRNAs are not only able to serve as biomarkers for CAD diagnosis but can also regulate CAD progression through ceRNA mechanisms and are a potential target for early clinical intervention in CAD.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xinyu Wu
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Haocheng Ma
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Guihu Sun
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Peng Ding
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Si Lu
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lijiao Zhang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ping Yang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yunzhu Peng
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jingyun Fu
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Luqiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
17
|
Ward Z, Schmeier S, Pearson J, Cameron VA, Frampton CM, Troughton RW, Doughty RN, Richards AM, Pilbrow AP. Identifying Candidate Circulating RNA Markers for Coronary Artery Disease by Deep RNA-Sequencing in Human Plasma. Cells 2022; 11:3191. [PMID: 36291058 PMCID: PMC9599983 DOI: 10.3390/cells11203191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2023] Open
Abstract
Advances in RNA sequencing (RNA-Seq) have facilitated transcriptomic analysis of plasma for the discovery of new diagnostic and prognostic markers for disease. We aimed to develop a short-read RNA-Seq protocol to detect mRNAs, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in plasma for the discovery of novel markers for coronary artery disease (CAD) and heart failure (HF). Circulating cell-free RNA from 59 patients with stable CAD (half of whom developed HF within 3 years) and 30 controls was sequenced to a median depth of 108 paired reads per sample. We identified fragments from 3986 messenger RNAs (mRNAs), 164 long non-coding RNAs (lncRNAs), 405 putative novel lncRNAs and 227 circular RNAs in plasma. Circulating levels of 160 mRNAs, 10 lncRNAs and 2 putative novel lncRNAs were altered in patients compared with controls (absolute fold change >1.2, p < 0.01 adjusted for multiple comparisons). The most differentially abundant transcripts were enriched in mRNAs encoded by the mitochondrial genome. We did not detect any differences in the plasma RNA profile between patients who developed HF compared with those who did not. In summary, we show that mRNAs, lncRNAs and circular RNAs can be reliably detected in plasma by deep RNA-Seq. Multiple coding and non-coding transcripts were altered in association with CAD, including several mitochondrial mRNAs, which may indicate underlying myocardial ischaemia and oxidative stress. If validated, circulating levels of these transcripts could potentially be used to help identify asymptomatic individuals with established CAD prior to an acute coronary event.
Collapse
Affiliation(s)
- Zoe Ward
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Sebastian Schmeier
- School of Natural and Computational Sciences, Massey University, Auckland 0632, New Zealand
- Evotec SE, Essener Bogen 7, 22419 Hamburg, Germany
| | - John Pearson
- Biostatistics and Computational Biology Unit, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Vicky A Cameron
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Chris M Frampton
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Richard W Troughton
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Rob N Doughty
- Heart Health Research Group, University of Auckland, Auckland 1023, New Zealand
| | - A. Mark Richards
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
- Cardiovascular Research Institute, National University of Singapore, Singapore 119228, Singapore
| | - Anna P Pilbrow
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
18
|
Bai N, Liu W, Xiang T, Zhou Q, Pu J, Zhao J, Luo D, Liu X, Liu H. Genetic association of ANRIL with susceptibility to Ischemic stroke: A comprehensive meta-analysis. PLoS One 2022; 17:e0263459. [PMID: 35653368 PMCID: PMC9162336 DOI: 10.1371/journal.pone.0263459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Ischemic stroke (IS) is a complex polygenic disease with a strong genetic background. The relationship between the ANRIL (antisense non-coding RNA in the INK4 locus) in chromosome 9p21 region and IS has been reported across populations worldwide; however, these studies have yielded inconsistent results. The aim of this study is to clarify the types of single-nucleotide polymorphisms on the ANRIL locus associated with susceptibility to IS using meta-analysis and comprehensively assess the strength of the association.
Methods
Relevant studies were identified by comprehensive and systematic literature searches. The quality of each study was assessed using the Newcastle-Ottawa Scale. Allele and genotype frequencies were extracted from each of the included studies. Odds ratios with corresponding 95% confidence intervals of combined analyses were calculated under three genetic models (allele frequency comparison, dominant model, and recessive model) using a random-effects or fixed-effects model. Heterogeneity was tested using the chi-square test based on the Cochran Q statistic and I2 metric, and subgroup analyses and a meta-regression model were used to explore sources of heterogeneity. The correction for multiple testing used the false discovery rate method proposed by Benjamini and Hochberg. The assessment of publication bias employed funnel plots and Egger’s test.
Results
We identified 25 studies (15 SNPs, involving a total of 11,527 cases and 12,216 controls maximum) and performed a meta-analysis. Eight SNPs (rs10757274, rs10757278, rs2383206, rs1333040, rs1333049, rs1537378, rs4977574, and rs1004638) in ANRIL were significantly associated with IS risk. Six of these SNPs (rs10757274, rs10757278, rs2383206, rs1333040, rs1537378, and rs4977574) had a significant relationship to the large artery atherosclerosis subtype of IS. Two SNPs (rs2383206 and rs4977574) were associated with IS mainly in Asians, and three SNPs (rs10757274, rs1333040, and rs1333049) were associated with susceptibility to IS mainly in Caucasians. Sensitivity analyses confirmed the reliability of the original results. Ethnicity and individual studies may be the main sources of heterogeneity in ANRIL.
Conclusions
Our results suggest that some single-nucleotide polymorphisms on the ANRIL locus may be associated with IS risk. Future studies with larger sample numbers are necessary to confirm this result. Additional functional analyses of causal effects of these polymorphisms on IS subtypes are also essential.
Collapse
Affiliation(s)
- Na Bai
- Department of Neurology, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Nanbu People’s Hospital, Nanbu, Sichuan, China
| | - Tao Xiang
- Department of Neurology, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Qiang Zhou
- Department of Neurology, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jing Zhao
- Department of Neurology, Nanbu People’s Hospital, Nanbu, Sichuan, China
| | - Danyang Luo
- Nuclear Industry 416 Hospital & The Second Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xindong Liu
- Nuclear Industry 416 Hospital & The Second Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Hua Liu
- Department of Neurology, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
19
|
Zhang L, Zhou S, Zhou T, Li X, Tang J. Targeting the lncRNA DUXAP8/miR-29a/ PIK3CA Network Restores Doxorubicin Chemosensitivity via PI3K-AKT-mTOR Signaling and Synergizes With Inotuzumab Ozogamicin in Chemotherapy-Resistant B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2022; 12:773601. [PMID: 35311115 PMCID: PMC8924619 DOI: 10.3389/fonc.2022.773601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose This study aimed to determine the expression profiles of long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA in chemotherapy-resistant B-cell acute lymphoblastic leukemia (B-ALL). Methods LncRNA, miRNA, and mRNA profiles were assessed by RNA-seq in diagnostic bone marrow samples from 6 chemotherapy-resistant and 6 chemotherapy-sensitive B-ALL patients. The lncRNA DUXAP8/miR-29a/PIK3CA signaling network was identified as the most dysregulated in chemoresistant patient samples, and its effect on cellular phenotypes, PI3K-AKT-mTOR signaling, and chemosensitivity of doxorubicin (Dox)-resistant Nalm-6 (N6/ADR), and Dox-resistant 697 (697/ADR) cells were assessed. Furthermore, its synergy with inotuzumab ozogamicin treatment was investigated. Results 1,338 lncRNAs, 75 miRNAs, and 1620 mRNAs were found to be dysregulated in chemotherapy-resistant B-ALL in comparison to chemotherapy-sensitive B-ALL patient samples. Through bioinformatics analyses and RT-qPCR validation, the lncRNA DUXAP8/miR-29a/PIK3CA network and PI3K-AKT-mTOR signaling were identified as significantly associated with B-ALL chemotherapy resistance. In N6/ADR and 697/ADR cells, LncRNA DUXAP8 overexpression and PIK3CA overexpression induced proliferation and inhibited apoptosis, and their respective knockdowns inhibited proliferation, facilitated apoptosis, and restored Dox chemosensitivity. MiR-29a was shown to affect the lncRNA DUXAP8/PIK3CA network, and luciferase reporter gene assay showed direct binding between lncRNA DUXAP8 and miR-29a, as well as between miR-29a and PIK3CA. Targeting lncRNA DUXAP8/miR-29a/PIK3CA network synergized with inotuzumab ozogamicin's effect on N6/ADR and 697/ADR cells. Conclusion Targeting the lncRNA DUXAP8/miR-29a/PIK3CA network not only induced an apoptotic effect on Dox-resistant B-ALL and restored Dox chemosensitivity via PI3K-AKT-mTOR signaling but also showed synergism with inotuzumab ozogamicin treatment.
Collapse
Affiliation(s)
- Li Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shixia Zhou
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoming Li
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junling Tang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
The interplay of long noncoding RNA HULC with microRNA-128-3p and their correlations with lipid level, stenosis degree, inflammatory cytokines, and cell adhesion molecules in coronary heart disease patients. Ir J Med Sci 2022; 191:2597-2603. [PMID: 35088229 DOI: 10.1007/s11845-021-02900-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Long noncoding RNA HULC (lnc-HULC) and its target microRNA-128-3p (miR-128-3p) regulate endothelial cell function, blood lipid level, and inflammatory cytokine production, which are involved in the pathogenesis of coronary heart disease (CHD). Based on the above information, this study intended to further investigate the correlation between lnc-HULC and miR-128-3p, as well as their clinical values for CHD management. METHODS Totally, 141 CHD patients and 70 controls were enrolled. Lnc-HULC and miR-128-3p in peripheral blood mononuclear cells were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Serum inflammatory cytokines and cell adhesion molecules were further determined by enzyme-linked immunosorbent assay (ELISA) in CHD patients. RESULTS Lnc-HULC was upregulated, while miR-128-3p was downregulated in CHD patients than in controls (both P < 0.001). The ROC curve further displayed that lnc-HULC (AUC: 0.906, 95% CI: 0.867-0.945) and miR-128-3p (AUC: 0.814, 95% CI: 0.756-0.873) had the potential of discriminating CHD patients from controls. Regarding the correlation between lnc-HULC and miR-128-3p, lnc-HULC was negatively associated with miR-128-3p in CHD patients (rs = - 0.307, P < 0.001), but this association was not observed in controls (rs = - 0.155, P = 0.199). Furthermore, it was discovered that upregulated lnc-HULC was associated with elevated blood lipid levels (TG, LDL-C), inflammatory cytokines (interleukin (IL)-1β, IL-17A), cell adhesion molecules (VCAM-1), and Gensini score (all P < 0.05) in CHD patients. Meanwhile, miR-128-3p was negatively associated with blood lipid level (LDL-C), inflammatory cytokines (TNF-α, IL-1β, IL-6), cell adhesion molecules (VCAM-1, ICAM-1), and Gensini score (all P < 0.05) in CHD patients. CONCLUSION Lnc-HULC and its target miR-128-3p relate to lipid level, stenosis degree, inflammatory cytokines, and cell adhesion molecules in CHD patients.
Collapse
|
21
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2021; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R. Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
22
|
Ghafouri-Fard S, Gholipour M, Taheri M. Role of MicroRNAs in the Pathogenesis of Coronary Artery Disease. Front Cardiovasc Med 2021; 8:632392. [PMID: 33912599 PMCID: PMC8072222 DOI: 10.3389/fcvm.2021.632392] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease (CAD) is the main reason of cardiovascular mortalities worldwide. This condition is resulted from atherosclerotic occlusion of coronary arteries. MicroRNAs (miRNAs) are implicated in the regulation of proliferation and apoptosis of endothelial cells, induction of immune responses and different stages of plaque formation. Up-regulation of miR-92a-3p, miR-206, miR-216a, miR-574-5p, miR-23a, miR-499, miR-451, miR-21, miR-146a, and a number of other miRNAs has been reported in CAD patients. In contrast, miR-20, miR-107, miR-330, miR-383-3p, miR-939, miR-4306, miR-181a-5p, miR-218, miR-376a-3p, and miR-3614 are among down-regulated miRNAs in CAD. Differential expression of miRNAs in CAD patients has been exploited to design diagnostic or prognostic panels for evaluation of CAD patients. We appraise the recent knowledge about the role of miRNAs in the development of diverse clinical subtypes of CAD.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|