1
|
Taylor DJ, Saxton H, Halliday I, Newman T, Hose DR, Kassab GS, Gunn JP, Morris PD. Systematic review and meta-analysis of Murray's law in the coronary arterial circulation. Am J Physiol Heart Circ Physiol 2024; 327:H182-H190. [PMID: 38787386 PMCID: PMC11380967 DOI: 10.1152/ajpheart.00142.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Murray's law has been viewed as a fundamental law of physiology. Relating blood flow ([Formula: see text]) to vessel diameter (D) ([Formula: see text]·∝·D3), it dictates minimum lumen area (MLA) targets for coronary bifurcation percutaneous coronary intervention (PCI). The cubic exponent (3.0), however, has long been disputed, with alternative theoretical derivations, arguing this should be closer to 2.33 (7/3). The aim of this meta-analysis was to quantify the optimum flow-diameter exponent in human and mammalian coronary arteries. We conducted a systematic review and meta-analysis of all articles quantifying an optimum flow-diameter exponent for mammalian coronary arteries within the Cochrane library, PubMed Medline, Scopus, and Embase databases on 20 March 2023. A random-effects meta-analysis was used to determine a pooled flow-diameter exponent. Risk of bias was assessed with the National Institutes of Health (NIH) quality assessment tool, funnel plots, and Egger regression. From a total of 4,772 articles, 18 were suitable for meta-analysis. Studies included data from 1,070 unique coronary trees, taken from 372 humans and 112 animals. The pooled flow diameter exponent across both epicardial and transmural arteries was 2.39 (95% confidence interval: 2.24-2.54; I2 = 99%). The pooled exponent of 2.39 showed very close agreement with the theoretical exponent of 2.33 (7/3) reported by Kassab and colleagues. This exponent may provide a more accurate description of coronary morphometric scaling in human and mammalian coronary arteries, as compared with Murray's original law. This has important implications for the assessment, diagnosis, and interventional treatment of coronary artery disease.
Collapse
Affiliation(s)
- Daniel J Taylor
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Harry Saxton
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, United Kingdom
| | - Ian Halliday
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Tom Newman
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - D R Hose
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, California, United States
| | - Julian P Gunn
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Paul D Morris
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
2
|
Tanigaki T, Kato S, Azuma M, Ito M, Horita N, Utsunomiya D. Coronary flow reserve evaluated by phase-contrast cine cardiovascular magnetic resonance imaging of coronary sinus: a meta-analysis. J Cardiovasc Magn Reson 2023; 25:11. [PMID: 36805689 PMCID: PMC9940433 DOI: 10.1186/s12968-023-00912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/05/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Phase-contrast cine cardiovascular magnetic resonance (CMR) of the coronary sinus has emerged as a non-invasive method for measuring coronary sinus blood flow and coronary flow reserve (CFR). However, its clinical utility has not yet been established. Here we performed a meta-analysis to clarify the clinical value of CMR-derived CFR in various cardiovascular diseases. METHODS An electronic database search was performed of PubMed, Web of Science Core Collection, Cochrane Advanced Search, and EMBASE. We compared the CMR-derived CFR of various cardiovascular diseases (stable coronary artery disease [CAD], hypertrophic cardiomyopathy [HCM], dilated cardiomyopathy [DCM]) and control subjects. We assessed the prognostic value of CMR-derived CFR for predicting major adverse cardiac events (MACE) in patients with stable CAD. RESULTS A total of 47 eligible studies were identified. The pooled CFR from our meta-analysis was 3.48 (95% confidence interval [CI], 2.98-3.98) in control subjects, 2.50 (95% CI, 2.38-2.61) in stable CAD, 2.01 (95% CI, 1.70-2.32) in cardiomyopathies (HCM and DCM). The meta-analysis showed that CFR was significantly reduced in stable CAD (mean difference [MD] = -1.48; 95% CI, -1.78 to -1.17; p < 0.001; I2 = 0%; p for heterogeneity = 0.33), HCM (MD = -1.20; 95% CI, -1.63 to -0.77; p < 0.001; I2 = 0%; p for heterogeneity = 0.49), and DCM (MD = -1.53; 95% CI, -1.93 to -1.13; p < 0.001; I2 = 0%; p for heterogeneity = 0.45). CMR-derived CFR was an independent predictor of MACE for patients with stable CAD (hazard ratio = 0.52 per unit increase; 95% CI, 0.37-0.73; p < 0.001; I2 = 84%, p for heterogeneity < 0.001). CONCLUSIONS CMR-derived CFR was significantly decreased in cardiovascular diseases, and a decreased CFR was associated with a higher occurrence of MACE in patients with stable CAD. These results suggest that CMR-derived CFR has potential for the pathological evaluation of stable CAD, cardiomyopathy, and risk stratification in CAD.
Collapse
Affiliation(s)
- Toshiki Tanigaki
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shingo Kato
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Mai Azuma
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Masanori Ito
- Department of Diagnostic Radiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
3
|
Candreva A, De Nisco G, Lodi Rizzini M, D’Ascenzo F, De Ferrari GM, Gallo D, Morbiducci U, Chiastra C. Current and Future Applications of Computational Fluid Dynamics in Coronary Artery Disease. Rev Cardiovasc Med 2022; 23:377. [PMID: 39076179 PMCID: PMC11269074 DOI: 10.31083/j.rcm2311377] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 07/31/2024] Open
Abstract
Hemodynamics interacts with the cellular components of human vessels, influencing function and healthy status. Locally acting hemodynamic forces have been associated-by a steadily increasing amount of scientific evidence-with nucleation and evolution of atherosclerotic plaques in several vascular regions, resulting in the formulation of the 'hemodynamic risk hypothesis' of the atherogenesis. At the level of coronary arteries, however, the complexity of both anatomy and physiology made the study of this vascular region particularly difficult for researchers. Developments in computational fluid dynamics (CFD) have recently allowed an accurate modelling of the intracoronary hemodynamics, thus offering physicians a unique tool for the investigation of this crucial human system by means of advanced mathematical simulations. The present review of CFD applications in coronary artery disease was set to concisely offer the medical reader the theoretical foundations of quantitative intravascular hemodynamics-reasoned schematically in the text in its basic (i.e., pressure and velocity) and derived quantities (e.g., fractional flow reserve, wall shear stress and helicity)-along with its current implications in clinical research. Moreover, attention was paid in classifying computational modelling derived from invasive and non-invasive imaging modalities with unbiased remarks on the advantages and limitations of each procedure. Finally, an extensive description-aided by explanatory figures and cross references to recent clinical findings-was presented on the role of near-wall hemodynamics, in terms of shear stress, and of intravascular flow complexity, in terms of helical flow.
Collapse
Affiliation(s)
- Alessandro Candreva
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
- Department of Cardiology, Zurich University Hospital, 8091 Zurich, Switzerland
| | - Giuseppe De Nisco
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Maurizio Lodi Rizzini
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Fabrizio D’Ascenzo
- Department of Medical Sciences, Division of Cardiology, AOU Città Della Salute e Della Scienza, University of Turin, 10124 Turin, Italy
| | - Gaetano Maria De Ferrari
- Department of Medical Sciences, Division of Cardiology, AOU Città Della Salute e Della Scienza, University of Turin, 10124 Turin, Italy
| | - Diego Gallo
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Umberto Morbiducci
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Claudio Chiastra
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|