1
|
Ndoj K, Meurs A, Papaioannou D, Bjune K, Zelcer N. The low-density lipoprotein receptor: Emerging post-transcriptional regulatory mechanisms. Atherosclerosis 2025; 401:119082. [PMID: 39700747 DOI: 10.1016/j.atherosclerosis.2024.119082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Cholesterol is a vital component of cellular membranes and is an essential molecule in mammalian physiology. Yet dysregulation of hepatic cholesterol metabolism and an increase in plasma cholesterol is linked to development of atherosclerotic cardiovascular disease. Maintaining tight regulation of cholesterol homeostasis is therefore essential, elegantly highlighted by the control of hepatic low-density lipoprotein receptor (LDLR) abundance and associated lipoprotein clearance. The LDLR was discovered in the 1970's in the seminal work of Brown and Goldstein. This was followed by the development of statins, which promote hepatic clearance of LDL via the LDLR pathway. The discovery two decades ago of Proprotein Convertase Subtilisin-Kexin Type 9 (PCSK9), a secreted protein that binds to the LDLR ectodomain and promotes its degradation, and the clinical development of PCSK9 inhibitors has ushered an effort to uncover additional mechanisms that govern the function and abundance of the LDLR. In recent years this has led to the identification of novel post-transcriptional and post-translational mechanisms that govern the LDLR. This review focuses on these emerging regulatory mechanisms and specifically discusses: (1) Regulation of the LDLR mRNA by RNA-binding proteins and microRNAs, (2) Ubiquitin-dependent degradation of the LDLR protein by the E3 ubiquitin ligases inducible degrader of the LDLR (IDOL) and GOLIATH (RNF130), (3) Control of the LDLR pathway by the asialoglycoprotein receptor 1 (ASGR1), and (4) The role of LDLR ectodomain shedding mediated by membrane-type 1 matrix metalloprotease (MT1-MMP), Bone morphogenetic protein 1 (BMP1), and γ-secretase. Understanding the contribution of these emerging mechanisms to regulation of the LDLR is important for the development of novel LDLR-focused lipid-lowering strategies.
Collapse
Affiliation(s)
- Klevis Ndoj
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Amber Meurs
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Dimitra Papaioannou
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Chen X, Liu Y, Zhou Q, Zhang C, Wang W, Xu M, Zhao Y, Zhao W, Gu D, Tan S. MiR-99a-5p up-regulates LDLR and functionally enhances LDL-C uptake via suppressing PCSK9 expression in human hepatocytes. Front Genet 2024; 15:1469094. [PMID: 39628814 PMCID: PMC11611869 DOI: 10.3389/fgene.2024.1469094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Background MicroRNAs (miRs/miRNAs) play pivotal roles in modulating cholesterol homeostasis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipoprotein receptor (LDLR) at the surface of hepatocytes and accelerates its degradation in lysosomes, thereby impairing the clearance of circulating low-density lipoprotein cholesterol (LDL-C) from plasma. Thus, suppressing PCSK9 expression level has become an effective approach for treating hypercholesterolemia. Here, we sought to identify novel miRNAs that inhibit PCSK9 expression. Methods By in silico analyses, miR-99a-5p was predicted to bind to human PCSK9 mRNA. Following transfection of miR-99a-5p or anti-miR-99a-5p in human and mouse hepatocytes, qRT-PCR, Western blot, immunofluorescence, ELISA, flow cytometry, LDL-C uptake, and cellular cholesterol measurement were performed. Results miR-99a-5p overexpression potently inhibited PCSK9 expression, thereby up-regulating LDLR, functionally enhancing LDL-C uptake and increasing intracellular cholesterol levels in human, but not in mouse, cells. Conversely, anti-miR-99a-5p upregulates PCSK9, leading to a reduction in LDLR, attenuation of LDL-C uptake, and a decrease in the intracellular cholesterol levels of human hepatocytes. Furthermore, miR-99a-5p was shown to bind to the predicted target site "UACGGGU" in the 3'-UTR of human PCSK9 mRNA via a luciferase reporter assay in combination with site-directed mutagenesis. Conclusion MiR-99a-5p potently downregulates the expression of PCSK9 by directly interacting with a target site in the human PCSK9 3'-UTR, thereby up-regulating LDLR and functionally enhancing LDL-C uptake in human hepatocytes. MiR-99a-5p could serve as an inhibitor of PCSK9 for treating hypercholesterolemia to inhibit atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Keshavarz R, Reiner Ž, Zengin G, Eid AH, Sahebkar A. MicroRNA-mediated Regulation of LDL Receptor: Biological and Pharmacological Implications. Curr Med Chem 2024; 31:1830-1838. [PMID: 37026494 DOI: 10.2174/0929867330666230407091652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 04/08/2023]
Abstract
One of the main causes of atherosclerosis is a disruption in cellular cholesterol hemostasis. The low-density lipoprotein receptor (LDLR) is an important factor in maintaining cholesterol homeostasis by the receptor-mediated endocytosis of LDL particles. Defective hepatic LDLR activity and uptake of LDL particles lead to elevated blood levels of low-density lipoprotein cholesterol (LDL-C), which is associated with a higher risk of atherosclerotic cardiovascular disease. LDLR expression can be affected by microRNAs (miRNAs). Some miRNAs, like miR-148a, miR-185, miR-224, miR-520, miR-128-1, miR-27a/b, miR-130b, and miR-301 seem to be important post-transcriptional regulators of LDLR related genes. These findings indicate the critical role of miRNAs in regulating LDL metabolism. The aim of this review was to provide insight into the miRNAs involved in LDLR activity and their potential roles in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Reyhaneh Keshavarz
- Department of Genetics, Faculty of Biological Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, University of Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Levstek T, Karun T, Rehberger Likozar A, Šebeštjen M, Trebušak Podkrajšek K. Interplay between microRNAs, Serum Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), and Lipid Parameters in Patients with Very High Lipoprotein(a) Treated with PCSK9 Inhibitors. Genes (Basel) 2023; 14:genes14030632. [PMID: 36980904 PMCID: PMC10048228 DOI: 10.3390/genes14030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has an important function in the regulation of lipid metabolism. PCSK9 reduces hepatic low-density lipoprotein receptors, thereby increasing low-density lipoprotein cholesterol levels. However, its regulation remains to be elucidated, including post-transcriptional regulation by microRNAs (miRNAs). We aimed to explore the interplay between miRNAs, total serum PCSK9, and lipids during treatment with PCSK9 inhibitors. A total of 64 patients with stable coronary artery disease and very high lipoprotein(a) levels and 16 sex- and age-matched control subjects were enrolled. Patients received a PCSK9 inhibitor (evolocumab or alirocumab). Total serum PCSK9 levels were measured by immunoassay. RNA was isolated from plasma using magnetic beads, and expression of selected miRNAs was analyzed by quantitative PCR. Total serum PCSK9 levels were significantly higher in control subjects compared with patients. After 6 months of treatment with PCSK9 inhibitors, total serum PCSK9 levels increased significantly. The expression of miR-191-5p was significantly lower, and the expression of miR-224-5p and miR-483-5p was significantly higher in patients compared with control subjects. Using linear regression, the expression of miR-483-5p significantly predicted the serum PCSK9 level at baseline. After the 6-month period of therapy, the expression of miR-191-5p and miR-483-5p significantly increased. Our results support a role for miR-483-5p in regulating circulating PCSK9 in vivo. The difference in expression of miR-191-5p, miR-224-5p, and miR-337-3p between patients and control subjects suggests their possible role in the pathogenesis of coronary artery disease.
Collapse
Affiliation(s)
- Tina Levstek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Tina Karun
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Andreja Rehberger Likozar
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Miran Šebeštjen
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
- Department of Cardiology, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
6
|
Post-Transcriptional Effects of miRNAs on PCSK7 Expression and Function: miR-125a-5p, miR-143-3p, and miR-409-3p as Negative Regulators. Metabolites 2022; 12:metabo12070588. [PMID: 35888711 PMCID: PMC9323720 DOI: 10.3390/metabo12070588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
The regulatory mechanism of PCSK7 gene is still unknown, although its encoded protein PC7 is the most ancient and highly conserved of all proprotein convertases and exhibits enzymatic and non-enzymatic functions in liver triglyceride regulation. Bioinformatics algorithms were used to predict regulatory microRNAs (miRNAs) of PCSK7 expression. This led to the identification of four miRNAs, namely miR-125a-5p, miR-143-3p, miR-409-3p, and miR-320a-3p, with potential binding sites on the 3′-untranslated region (3′-UTR) of human PCSK7 mRNA. The expression patterns of these miRNAs and PCSK7 mRNA were assessed in three different cell lines with quantitative polymerase chain reaction (qPCR), which revealed reciprocal expression patterns between the expression levels of the four selected miRNAs and PCSK7. Next, the interactions and effects of these miRNAs on PCSK7 expression levels were investigated via cell-based expression analysis, dual-luciferase assay, and Western blot analysis. The data revealed that PCSK7 mRNA levels decreased in cells transfected with vectors overexpressing miR-125a-5p, miR-143-3p, and miR-409-3p, but not miR-320a-3p. The dual-luciferase assay demonstrated that the above three miRNAs could directly interact with putative target sites in PCSK7 3′-UTR and regulate its expression, whereas miR-320-3p exhibited no interaction. Western blot analysis further revealed that the overexpression of miR-125a-5p in Huh7 cells inhibits the expression and ability of PC7 to cleave human transferrin receptor 1. Our results support a regulatory role of these miRNAs on PCSK7 expression and function and open the way to assess their roles in the regulation of PC7 activity in vivo in the development of hepatic steatosis.
Collapse
|
7
|
Valacchi G, Pambianchi E, Coco S, Pulliero A, Izzotti A. MicroRNA Alterations Induced in Human Skin by Diesel Fumes, Ozone, and UV Radiation. J Pers Med 2022; 12:176. [PMID: 35207665 PMCID: PMC8880698 DOI: 10.3390/jpm12020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations are a driving force of the carcinogenesis process. MicroRNAs play a role in silencing mutated oncogenes, thus defending the cell against the adverse consequences of genotoxic damages induced by environmental pollutants. These processes have been well investigated in lungs; however, although skin is directly exposed to a great variety of environmental pollutants, more research is needed to better understand the effect on cutaneous tissue. Therefore, we investigated microRNA alteration in human skin biopsies exposed to diesel fumes, ozone, and UV light for over 24 h of exposure. UV and ozone-induced microRNA alteration right after exposure, while the peak of their deregulations induced by diesel fumes was reached only at the end of the 24 h. Diesel fumes mainly altered microRNAs involved in the carcinogenesis process, ozone in apoptosis, and UV in DNA repair. Accordingly, each tested pollutant induced a specific pattern of microRNA alteration in skin related to the intrinsic mechanisms activated by the specific pollutant. These alterations, over a short time basis, reflect adaptive events aimed at defending the tissue against damages. Conversely, whenever environmental exposure lasts for a long time, the irreversible alteration of the microRNA machinery results in epigenetic damage contributing to the pathogenesis of inflammation, dysplasia, and cancer induced by environmental pollutants.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Erika Pambianchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | | | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- UOC Mutagenesis and Cancer Prevention, IRCCS San Martino Hospital, 16132 Genova, Italy
| |
Collapse
|