1
|
Barnes P, Agbo E, Halm-Lai F, Dankwa K, Saahene RO, Nuvor SV, Obiri-Yeboah D, Yahaya ES. Insight into the immunomodulatory and chemotherapeutic mechanisms of paeonol (Review). MEDICINE INTERNATIONAL 2025; 5:24. [PMID: 40083771 PMCID: PMC11904873 DOI: 10.3892/mi.2025.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
Paeonol a, pharmacologically active constituent obtained from the root bark of Paeonia suffruticosa has been extensively utilized as a traditional Chinese medicine for the treatment, prevention and control of several diseases for years. Paeonol has been reported to possess key immunomodulatory properties; however, the underlying mechanisms involved in its immunomodulatory and anticancer effects have not been extensively researched due to limitations in terms of design, conduct and interpretation. The present review focuses on both the in vitro and in vivo immunosuppressive and anticancer effects of paeonol and the underlying mechanisms of action. The present literature review aimed to include all the notable findings published on Google Scholar, PubMed, Web of Science, SciFinder and ScienceDirect. Overall, paeonol possesses multifaceted pharmacological activities with potential for use in the development of novel immunomodulator and anticancer therapeutic agents. Paeonol decreases IL-1β expression to repress several inflammatory mediators, such as NO, iNOS, COX2 and PEG2 in the inhibition of the NLRP3 inflammasome, NF-κB, MAPK and TLR4 pathways to provide multiple levels immunosuppression; these effects may be beneficial in immune-related diseases. Furthermore, paeonol inhibits cancer cell growth, proliferation, invasion and metastasis by inducing cell apoptosis and the suppression of the TLR4/NF-κB/STAT3/MAPK/PI3K/AKT/CHOP/VEGF/HIF-1α, pathways. The present review aimed to promote further research to exploit the potential use of paeonol as a novel therapeutic agent for immunomodulation and cancer management.
Collapse
Affiliation(s)
- Precious Barnes
- Department of Chemical Pathology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast 00233, Ghana
| | - Elvis Agbo
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Jinggangshan University, Ji'an, Jiangxi 343000, P.R. China
| | - Faustina Halm-Lai
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, 00233, Ghana
| | - Kwabena Dankwa
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, 00233, Ghana
| | - Roland Osei Saahene
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, 00233, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, 00233, Ghana
| | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, 00233, Ghana
| | - Ewura Seidu Yahaya
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast 00233, Ghana
| |
Collapse
|
2
|
Ha B, Kang JH, Kim DH, Lee MY. Lipopolysaccharide-Induced Inflammatory Response and Its Prominent Suppression by Paspalum thunbergii Extract. Int J Mol Sci 2025; 26:1611. [PMID: 40004077 PMCID: PMC11855676 DOI: 10.3390/ijms26041611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The extract of Paspalum thunbergii, a native perennial herb in Korea belonging to the rice family, was investigated for its anti-inflammatory activity and the underlying mechanisms driving its effects. Fifteen chemical components of the P. thunbergii extract, including rosmarinic acid and isoquercitrin, were identified using LC-MS. The extract showed antioxidative activity through DPPH and ABTS cation radical scavenging activity. The P. thunbergii extract significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in macrophage RAW 264.7 cells. The extract inhibited the expression of lipopolysaccharide-induced iNOS and COX-2, which are inflammation-related enzymes. To explore the underlying anti-inflammatory mechanism, the expression levels of signal proteins related to MAPK, NF-κB, JAK/STAT, and Wnt/β-catenin signaling were measured. As a result, the P. thunbergii extract inhibited the expression of p-p38, and p-JNK increased by LPS in RAW 264.7 cells. Additionally, it decreased the expression of LPS-induced p-IKKβ and p-NF-κB p65 and prevented the migration of p-NF-κB into the nucleus caused by LPS. Notably, p-JAK1, p-STAT3, Wnt 3α, β-catenin, and p-GSK-3β protein expressions were also inhibited. Therefore, the prominent anti-inflammatory activity of the P. thunbergii extract may be via the MAPK, NF-κB, JAK/STAT, Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Bin Ha
- Department of Medical Science, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Ji-Hye Kang
- Department of Medical Biotechnology, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Do Hyun Kim
- Department of Research and Development, Eshel Biopharm Co., Ltd., Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Mi-Young Lee
- Department of Medical Science, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
- Department of Medical Biotechnology, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
- Department of Research and Development, Eshel Biopharm Co., Ltd., Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
3
|
Hu J, Bai M, Xing Y, Liu J, Xu K, Xiong X, Liu H, Yin Y. Artemisia annua Residue Regulates Immunity, Antioxidant Ability, Intestinal Barrier Function, and Microbial Structure in Weaned Piglets. Animals (Basel) 2024; 14:3569. [PMID: 39765473 PMCID: PMC11672813 DOI: 10.3390/ani14243569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Artemisia annua residue (AR), as the byproduct of industrial extraction of artemisinin, contains rich nutrients and active ingredients. This study was conducted to determine the effects of AR as an unconventional feed material on growth performance, immunity, and intestinal health in weaned piglets. Thirty-two piglets weaned at 21 days (7.53 ± 0.31 kg average BW) were fed with a corn-soybean basal diet (BD) and a basal diet with 1% (LAR), 2% (MAR), and 4% (HAR) AR diets for 28 days. AR diets increased the serum IgA and complement component 3 levels, superoxide dismutase activity, and villus height in the duodenum (p < 0.05). The MAR group increased the ADG, serum total protein, and mRNA expression levels of Claudin-1 in the duodenum and zonula occludens-1 (ZO-1) and the mucin 2 (MUC2) in the colon, as well as colonic Romboutsia and Anaerostipes abundances, and decreased the Proteobacteria abundance (p < 0.05). To sum up, dietary AR supplementation may enhance growth performance by improving serum immunoglobulin and antioxidant enzyme activity, intestinal morphology, tight junction protein expression, and gut microbiota of weaned piglets. Regression analysis showed that the optimal AR supplemental level for growth performance, immunity, antioxidant ability, and intestinal health of weaned piglets was 2.08% to 4.24%.
Collapse
Affiliation(s)
- Jinjie Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (Y.X.); (Y.Y.)
| | - Miaomiao Bai
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (K.X.); (X.X.)
| | - Yueyao Xing
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (Y.X.); (Y.Y.)
| | - Junhong Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (K.X.); (X.X.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (K.X.); (X.X.)
| | - Hongnan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (K.X.); (X.X.)
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (Y.X.); (Y.Y.)
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (K.X.); (X.X.)
| |
Collapse
|
4
|
Shen B, Wen Y, Li S, Zhou Y, Chen J, Yang J, Zhao C, Wang J. Paeonol ameliorates hyperlipidemia and autophagy in mice by regulating Nrf2 and AMPK/mTOR pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155839. [PMID: 38943694 DOI: 10.1016/j.phymed.2024.155839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Hyperlipidemia, inadequate diet, and excessive medication increase the risk of cardiovascular disease. Paeonl (Pae), a phenolic compound found in Peony and Angelica dahurica, can alleviate lipid metabolism disorders and lipotoxicity. However, the molecular mechanism of Pae alleviating hyperlipidemia remains unclear and needs to be further explored. PURPOSE In this study, we explored whether Pae can prevent hyperlipidemia and investigated the molecular mechanisms. METHODS The effects of Pae (30, 45, 60mg·kg-1) on hyperlipidemia in Tyloapol-induced WT mice and Nrf2 knockout mice (Pae: 60mg·kg-1) were detected by oil red O staining, HE staining, TG, TC and other indexes. The expression levels of proinflammatory mediators, key lipid proteins and autophagy signaling pathway proteins were analyzed by enzyme-linked immunosorbent assay, western blot and immunofluorescence. The molecular mechanism of Pae alleviating hyperlipidemia was explored through molecular docking technique and in vivo and in vitro experiments. RESULTS Several studies indicated that Pae effectively improved tyloxapol (Ty)-induced lipid metabolism disorder, as evidenced by decreased triglyceride content, increased carnitine palmitoyltransferase 1 (CPT1), and Sirtuin 1 (Sirt1) protein expression. In addition, Pae ameliorated hyperlipidemia by activating the AMPK/ACC and PI3K/mTOR pathways. Interestingly, the therapeutic effect of Pae on hyperlipidemia was markedly reduced in Nrf2-/- mice. Molecular docking results indicated that Pae and Nrf2 exhibited good binding ability, suggesting that Nrf2 is a core target mediating the effects of Pae in the treatment of hyperlipidemia. Taken together, Pae alleviated hyperlipidemia in vivo and ameliorated lipid accumulation in vitro by activating AMPK/ACC and PI3K/mTOR signaling pathways via Nrf2 binding. CONCLUSION Our data suggest that paeonol can ameliorate hyperlipidemia and autophagy in mice by regulating Nrf2 and AMPK/mTOR pathways, and it has potential therapeutic value in the occurrence and development of hyperlipidemia.
Collapse
Affiliation(s)
- Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengxin Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junlin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Wang S, Liu W, Wei B, Wang A, Wang Y, Wang W, Gao J, Jin Y, Lu H, Ka Y, Yue Q. Traditional herbal medicine: Therapeutic potential in acute gouty arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118182. [PMID: 38621464 DOI: 10.1016/j.jep.2024.118182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute gouty arthritis (AGA) is characterized by a rapid inflammatory reaction caused by the build-up of monosodium urate (MSU) crystals in the tissues surrounding the joints. This condition often associated with hyperuricemia (HUA), is distinguished by its symptoms of intense pain, active inflammation, and swelling of the joints. Traditional approaches in AGA management often fall short of desired outcomes in clinical settings. However, recent ethnopharmacological investigations have been focusing on the potential of Traditional Herbal Medicine (THM) in various forms, exploring their therapeutic impact and targets in AGA treatment. AIM OF THE REVIEW This review briefly summarizes the current potential pharmacological mechanisms of THMs - including active ingredients, extracts, and prescriptions -in the treatment of AGA, and discusses the relevant potential mechanisms and molecular targets in depth. The objective of this study is to offer extensive information and a reference point for the exploration of targeted AGA treatment using THMs. MATERIALS AND METHODS This review obtained scientific publications focused on in vitro and in vivo studies of anti-AGA THMs conducted between 2013 and 2023. The literature was collected from various journals and electronic databases, including PubMed, Elsevier, ScienceDirect, Web of Science, and Google Scholar. The retrieval and analysis of relevant articles were guided by keywords such as "acute gouty arthritis and Chinese herbal medicine," "acute gouty arthritis herbal prescription," "acute gouty arthritis and immune cells," "acute gouty arthritis and inflammation," "acute gouty arthritis and NOD-like receptor thermoprotein domain associated protein 3 (NLRP3)," "acute gouty arthritis and miRNA," and "acute gouty arthritis and oxidative stress." RESULTS We found that AGA has a large number of therapeutic targets, highlighting the effectiveness the potential of THMs in AGA treatment through in vitro and in vivo studies. THMs and their active ingredients can mitigate AGA symptoms through a variety of therapeutic targets, such as influencing macrophage polarization, neutrophils, T cells, natural killer (NK) cells, and addressing factors like inflammation, NLRP3 inflammasome, signaling pathways, oxidative stress, and miRNA multi-target interactions. The anti-AGA properties of THMs, including their active components and prescriptions, were systematically summarized and categorized based on their respective therapeutic targets. CONCLUSION phenolic, flavonoid, terpenoid and alkaloid compounds in THMs are considered the key ingredients to improve AGA. THMs and their active ingredients achieve enhanced efficacy through interactions with multiple targets, of which NLRP3 is a main therapeutic target. Nonetheless, given the intricate composition of traditional Chinese medicine (TCM), additional research is required to unravel the underlying mechanisms and molecular targets through which THMs alleviate AGA.
Collapse
Affiliation(s)
- Siwei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| | - Bowen Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Aihua Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yiwen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jingyue Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yue Jin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Hang Lu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yuxiu Ka
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Qingyun Yue
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| |
Collapse
|
6
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
7
|
Chen YC, Chen JH, Tsai CF, Wu CY, Chang CN, Wu CT, Yeh WL. Protective effects of paeonol against cognitive impairment in lung diseases. J Pharmacol Sci 2024; 155:101-112. [PMID: 38797534 DOI: 10.1016/j.jphs.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Pulmonary inflammation may lead to neuroinflammation resulting in neurological dysfunction, and it is associated with a variety of acute and chronic lung diseases. Paeonol is a herbal phenolic compound with anti-inflammatory and anti-oxidative properties. The aim of this study is to understand the beneficial effects of paeonol on cognitive impairment, pulmonary inflammation and its underlying mechanisms. Pulmonary inflammation-associated cognitive deficit was observed in TNFα-stimulated mice, and paeonol mitigated the cognitive impairment by reducing the expressions of interleukin (IL)-1β, IL-6, and NOD-like receptor family pyrin domain-containing 3 (NLRP3) in hippocampus. Moreover, elevated plasma miR-34c-5p in lung-inflamed mice was also reduced by paeonol. Pulmonary inflammation induced by intratracheal instillation of TNFα in mice resulted in immune cells infiltration in bronchoalveolar lavage fluid, pulmonary edema, and acute fibrosis, and these inflammatory responses were alleviated by paeonol orally. In MH-S alveolar macrophages, tumor necrosis factor (TNF) α- and phorbol myristate acetate (PMA)-induced inflammasome activation was ameliorated by paeonol. In addition, the expressions of antioxidants were elevated by paeonol, and reactive oxygen species production was reduced. In this study, paeonol demonstrates protective effects against cognitive deficits and pulmonary inflammation by exerting anti-inflammatory and anti-oxidative properties, suggesting a powerful benefit as a potential therapeutic agent.
Collapse
Affiliation(s)
- Yen-Chang Chen
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 88, Sec. 1, Fengxing Road, Taichung, 427213, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, No.500 Lioufeng Road, Taichung, 413305, Taiwan
| | - Chen-Yun Wu
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan
| | - Chen-Ni Chang
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, No. 2, Yude Road, Taichung, 404332, Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan; Department of Biochemistry, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan.
| |
Collapse
|
8
|
Wang L, Xie Y, Myrzagali S, Pu W, Liu E. Metal ions as effectual tools for cancer with traditional Chinese medicine. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:296-308. [DOI: 10.1097/hm9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Malignant tumor has become a major threat affecting human health, and is one of the main causes of human death. Recent studies have shown that many traditional Chinese medicines (TCM) have good anti-tumor activity, which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity. However, the efficacy of TCM alone for the treatment of tumors is limited. Metal ions are essential substances for maintaining normal physiological activities. This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sandugash Myrzagali
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Wang Y, Li BS, Zhang ZH, Wang Z, Wan YT, Wu FW, Liu JC, Peng JX, Wang HY, Hong L. Paeonol repurposing for cancer therapy: From mechanism to clinical translation. Biomed Pharmacother 2023; 165:115277. [PMID: 37544285 DOI: 10.1016/j.biopha.2023.115277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Paeonol (PAE) is a natural phenolic monomer isolated from the root bark of Paeonia suffruticosa that has been widely used in the clinical treatment of some inflammatory-related diseases and cardiovascular diseases. Much preclinical evidence has demonstrated that PAE not only exhibits a broad spectrum of anticancer effects by inhibiting cell proliferation, invasion and migration and inducing cell apoptosis and cycle arrest through multiple molecular pathways, but also shows excellent performance in improving cancer drug sensitivity, reversing chemoresistance and reducing the toxic side effects of anticancer drugs. However, studies indicate that PAE has the characteristics of poor stability, low bioavailability and short half-life, which makes the effective dose of PAE in many cancers usually high and greatly limits its clinical translation. Fortunately, nanomaterials and derivatives are being developed to ameliorate PAE's shortcomings. This review aims to systematically cover the anticancer advances of PAE in pharmacology, pharmacokinetics, nano delivery systems and derivatives, to provide researchers with the latest and comprehensive information, and to point out the limitations of current studies and areas that need to be strengthened in future studies. We believe this work will be beneficial for further exploration and repurposing of this natural compound as a new clinical anticancer drug.
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zi-Hui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu-Ting Wan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fu-Wen Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing-Chun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jia-Xin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao-Yu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Liu C, Yi X, Yan J, Liu Q, Cao T, Liu S. Paeonol improves angiotensin II-induced cardiac hypertrophy by suppressing ferroptosis. Heliyon 2023; 9:e19149. [PMID: 37662733 PMCID: PMC10472000 DOI: 10.1016/j.heliyon.2023.e19149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
The aim of this study was to investigate the protective effect of paeonol (pae) on an angiotensin II (AngII)-induced cardiac hypertrophy mouse model. First, AngII mouse models were constructed and randomly grouped into the control (con), AngII, and AngII + Pae groups. Compared with that in the blank group, the surface area of myocardial cells in the AngII group increased significantly. In contrast to that in the AngII group, the cardiomyocyte surface area in the Pae group was significantly reduced. Ultrasound results showed that the myocardial function of mice in the AngII group was decreased compared with that in the Con group, while the myocardial function of mice in the Pae treatment was significantly improved. Moreover, the Fe2+ and lipid peroxide levels of primary cardiomyocytes were significantly increased after treatment with AngII and were significantly decreased after the addition of Pae. Compared with those in the Con group, cristae were reduced and the outer membrane was lost in the myocardial tissues of the AngII group, and myocardial MDA, ROS, and Fe2+ levels were increased. However, myocardial damage was significantly alleviated after Pae treatment, and myocardial MDA, ROS, and Fe2+ levels were reduced. Moreover, in myocardial tissue, AngII reduced the protein levels of xCT and GPX4, while the levels of both xCT and GPX4 were increased after Pae treatment. In conclusion, Pae protected the hearts of AngII mice by upregulating the protein expression of xCT and GPX4 and resisting AngII-induced ferroptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Canzhang Liu
- Department I of Cardiovasology, North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, 063000, PR China
| | - Xin Yi
- Department I of Cardiovasology, North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, 063000, PR China
| | - Jie Yan
- Department I of Cardiovasology, North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, 063000, PR China
| | - Qiang Liu
- Department I of Cardiovasology, North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, 063000, PR China
| | - Teng Cao
- Department I of Cardiovasology, North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, 063000, PR China
| | - Shuipeng Liu
- Department of Ultrasonic Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, 063000, PR China
| |
Collapse
|
11
|
Xiao L, Chen XJ, Feng JK, Li WN, Yuan S, Hu Y. Natural products as the calcium channel blockers for the treatment of arrhythmia: Advance and prospect. Fitoterapia 2023; 169:105600. [PMID: 37419421 DOI: 10.1016/j.fitote.2023.105600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Arrhythmia is one of the commonly heart diseases with observed abnormal heart-beat rhythm that caused by the obstacles of cardiac activity and conduction. The arrhythmic pathogenesis is complex and capricious and related with other cardiovascular diseases that may lead to heart failure and sudden death. In particular, calcium overload is recognized as the main reason causing arrhythmia through inducing apoptosis in cardiomyocytes. Moreover, calcium channel blockers have been widely used as the routine drugs for the treatment of arrhythmia, but the different arrhythmic complications and adverse effects limit their further applications and demand new drug discovery. Natural products have always been the rich minerals for the development of new drugs that could be employed as the versatile player for the discovery of safe and effective anti-arrhythmia drugs with new mechanisms. In this review, we summarized natural products with the activity against calcium signaling and the relevant mechanism of actions. We are expected to provide an inspiration for the pharmaceutical chemists to develop more potent calcium channel blockers for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Lu Xiao
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | | | - Wei-Na Li
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| | - Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
12
|
Liu J, Li X, Bai H, Yang X, Mu J, Yan R, Wang S. Traditional uses, phytochemistry, pharmacology, and pharmacokinetics of the root bark of Paeonia x suffruticosa andrews: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116279. [PMID: 36822345 DOI: 10.1016/j.jep.2023.116279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moutan Cortex (MC), commonly known as "Mu dan pi", refers to the dried root bark of Paeonia x suffruticosa Andrews and is broadly used as a traditional herbal medication in China, Japan, and Korea. For thousands of years, it has been utilized to treat female genital, extravasated blood, cardiovascular, and stagnant blood disorders. AIM OF THE REVIEW The purpose of this review article was to summarize information on the traditional uses, phytochemistry, pharmacology and pharmacokinetics of MC, as well as to outline the further research directions for the development of new drugs and the associations between traditional uses and pharmacological effects. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including PubMed, Web of Science, ScienceDirect, SciFinder, China Knowledge Resource Integrated Database, and Google Scholar. The date was from 1992 to 2022. RESULTS Approximately 163 chemical compounds have been extracted and identified from MC, including monoterpenes, monoterpene glycosides, triterpenes, phenolics, flavonoids, volatile oils, alkaloids, and others. In these categories, the monoterpene glycosides and phenols being the most common. A wide variety of pharmacological effects have been described for MC crude extracts and active molecules, such as antioxidant, anti-inflammatory, antibacterial and antiviral, antitumor, antidiabetic, organ protection, and neuroprotective activities, as well as treating cardiovascular diseases. Pharmacokinetics has been also used in the study of MC, including its crude extracts or chemical constituents, in order to explore the therapeutic mechanism, direct clinically appropriate application and provide new ideas for the exploitation of innovative medicines. CONCLUSION Modern pharmacological research has demonstrated that MC, as a significant therapeutic resource, has the ability to heal a wide range of diseases, particularly female genital and cardiovascular problems. These researches propose therapeutic ideas for the development of novel MC medicines. Furthermore, preclinical and clinical study have verified several observed pharmacological properties related with the traditional usages of MC.
Collapse
Affiliation(s)
- Jincai Liu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Huixin Bai
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xu Yang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jun Mu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ruonan Yan
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Siwang Wang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
13
|
Liu J, Yang D, Piao C, Wang X, Sun X, Li Y, Zhang S, Wu X. UPLC-Q-TOF/MS Based Plasma Metabolomics for Identification of Paeonol's Metabolic Target in Endometriosis. Molecules 2023; 28:molecules28020653. [PMID: 36677710 PMCID: PMC9864815 DOI: 10.3390/molecules28020653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Endometriosis is a common gynecological illness in women of reproductive age that significantly decreases life quality and fertility. Paeonol has been shown to play an important part in endometriosis treatments. Understanding the mechanism is critical for treating endometriosis. In this study, autologous transplantation combined with a 28 day ice water bath was used to create a rat model of endometriosis with cold clotting and blood stagnation. The levels of estradiol and progesterone in plasma were detected by ELISA, and the pathological changes of ectopic endometrial tissue were examined by H&E staining, which proved the efficacy of paeonol. For metabolomic analysis of plasma samples, UPLC-Q/TOF-MS was combined with multivariate statistical analysis to identify the influence of paeonol on small molecule metabolites relevant to endometriosis. Finally, the key targets were screened using a combination of network pharmacology and molecular docking approaches. The results showed that the pathological indexes of rats were improved and returned to normal levels after treatment with paeonol, which was the basis for confirming the efficacy of paeonol. Metabolomics results identified 13 potential biomarkers, and paeonol callbacks 7 of them, involving six metabolic pathways. Finally, four key genes were found for paeonol therapy of endometriosis, and the results of molecular docking revealed a significant interaction between paeonol and the four key genes. This study was successful in establishing a rat model of endometriosis with cold coagulation and blood stagnation. GCH1, RPL8, PKLR, and MAOA were the key targets of paeonol in the treatment of endometriosis. It is also demonstrated that metabolomic techniques give the potential and environment for comprehensively understanding drug onset processes.
Collapse
Affiliation(s)
- Jing Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dongxia Yang
- Department of Gynecology Medicine, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, China
| | - Chengyu Piao
- Good Laboratory Practice of Drug, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xu Wang
- Good Laboratory Practice of Drug, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaolan Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yongyan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shuxiang Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiuhong Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Correspondence: ; Tel.: +86-451-82193278
| |
Collapse
|
14
|
Yu W, Ilyas I, Aktar N, Xu S. A review on therapeutical potential of paeonol in atherosclerosis. Front Pharmacol 2022; 13:950337. [PMID: 35991897 PMCID: PMC9385965 DOI: 10.3389/fphar.2022.950337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The morbidity and mortality of atherosclerotic cardiovascular disease (ASCVD) is increasing year by year. Cortex Moutan is a traditional Chinese medicinal herb that has been widely used for thousands of years to treat a wide variety of diseases in Eastern countries due to its heat-clearing and detoxifying effects. Paeonol is a bioactive monomer extracted from Cortex Moutan, which has anti-atherosclerotic effects. In this article, we reviewed the pharmacological effects of paeonol against experimental atherosclerosis, as well as its protective effects on vascular endothelial cells, smooth muscle cells, macrophages, platelets, and other important cell types. The pleiotropic effects of paeonol in atherosclerosis suggest that it can be a promising therapeutic agent for atherosclerosis and its complications. Large-scale randomized clinical trials are warranted to elucidate whether paeonol are effective in patients with ASCVD.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
- Anhui Renovo Pharmaceutical Co., Ltd., Hefei, Anhui, China
- *Correspondence: Wei Yu, ; Suowen Xu,
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nasrin Aktar
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- *Correspondence: Wei Yu, ; Suowen Xu,
| |
Collapse
|
15
|
Antioxidant and Neuroprotective Effects of Paeonol against Oxidative Stress and Altered Carrier-Mediated Transport System on NSC-34 Cell Lines. Antioxidants (Basel) 2022; 11:antiox11071392. [PMID: 35883881 PMCID: PMC9311606 DOI: 10.3390/antiox11071392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Paeonol is a naturally occurring phenolic agent that attenuates neurotoxicity in neurodegenerative diseases. We aimed to investigate the antioxidant and protective effects of paeonol and determine its transport mechanism in wild-type (WT; NSC-34/hSOD1WT) and mutant-type (MT; NSC-34/hSOD1G93A) motor neuron-like amyotrophic lateral sclerosis (ALS) cell lines. Cytotoxicity induced by glutamate, lipopolysaccharides, and H2O2 reduced viability of cell; however, the addition of paeonol improved cell viability against neurotoxicity. The [3H]paeonol uptake was increased in the presence of H2O2 in both cell lines. Paeonol recovered ALS model cell lines by reducing mitochondrial oxidative stress induced by glutamate. The transport of paeonol was time-, concentration-, and pH-dependent in both NSC-34 cell lines. Kinetic parameters showed two transport sites with altered affinity and capacity in the MT cell line compared to the WT cell line. [3H]Paeonol uptake increased in the MT cell line transfected with organic anion transporter1 (Oat1)/Slc22a6 small interfering RNA compared to that in the control. Plasma membrane monoamine transporter (Pmat) was also involved in the uptake of paeonol by ALS model cell lines. Overall, paeonol exhibits neuroprotective activity via a carrier-mediated transport system and may be a beneficial therapy for preventing motor neuronal damage under ALS-like conditions.
Collapse
|
16
|
Chen C, Liu S, Cao G, Hu Y, Wang R, Wu M, Liu M, Yiu KH. Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis. Front Cardiovasc Med 2022; 9:695004. [PMID: 35865382 PMCID: PMC9294229 DOI: 10.3389/fcvm.2022.695004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundThis study primarily explored the role of paeonol in doxorubicin (DOX)-induced chronic heart failure (CHF), considering the cardioprotective effect of paeonol on an epirubicin-induced cardiac injury.MethodsDOX-induced CHF-modeled rats were treated with paeonol. Cardiac function and myocardial damage in rats were evaluated by using the multifunction instrument, and the histopathology, apoptosis, and the expression of miR-21-5p and S-phase kinase-associated protein 2 (SKP2) in myocardium were detected. The target gene of miR-21-5p was confirmed by a dual-luciferase reporter assay. After the required transfection or paeonol treatment, the viability, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) of the DOX-induced cardiomyocytes were determined. Reverse-transcription quantitative-PCR (RT-qPCR) and Western blot were performed to quantify the expressions of miR-21-5p, SKP2, and apoptosis-related factors.ResultsPaeonol improved cardiac function and also ameliorated the cardiac damage of CHF-modeled rats, where the downregulation of abnormally elevated myocardial damage markers, including brain natriuretic peptide, lactate dehydrogenase, renin, angiotensin II, aldosterone, and endothelin 1, was observed. Paeonol alleviated the histopathological injury and suppressed the apoptosis in CHF-modeled rats, inhibited miR-21-5p expression, and upregulated SKP2 expression in vitro and in vivo. miR-21-5p targeted SKP2. Paeonol and SKP2 increased the viability and MMP, but reduced apoptosis and ROS in the DOX-induced cardiomyocytes. miR-21-5p exerted effects opposite to PAE and SKP2, and it downregulated the expression of Bcl-2 and mitochondrion-Cytochrome c (Cyt c) and upregulated the expression of Bax, C-caspase-3, and cytoplasm-Cyt c. miR-21-5p reversed the effects of paeonol, and its effects were further reversed by SKP2.ConclusionPaeonol shows a cardioprotective effect on DOX-induced CHF via regulating the miR-21-5p/SKP2 axis.
Collapse
Affiliation(s)
- Cong Chen
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Shuhong Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Gaozhen Cao
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Yang Hu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Shenzhen, China
| | - Run Wang
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Min Wu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Mingya Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Kai Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Shenzhen, China
- *Correspondence: Kai Hang Yiu,
| |
Collapse
|
17
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|