1
|
Galanti K, Dabbagh GS, Ricci F, Gallina S, Giansante R, Jacob R, Obeng-Gyimah E, Cooper LT, Prasad SK, Birnie DH, Landstrom AP, Mohammed SF, Mohiddin S, Khanji MY, Chahal AA. Dilated cardiomyopathy evaluation with Imagenomics: combining multimodal cardiovascular imaging and genetics. ESC Heart Fail 2025. [PMID: 40275589 DOI: 10.1002/ehf2.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/16/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by the presence of left ventricular dilatation and systolic dysfunction unexplained by abnormal loading conditions or coronary artery disease. However, a broad range of phenotypic manifestations, encompassing isolated scar, DCM with preserved ejection fraction, and overt DCM, should be regarded as a diagnostic classification representing a broad spectrum of underlying aetiologies, including both inherited and acquired heart muscle disorders. A multimodal non-invasive imaging approach is essential for accurate morpho-functional assessment of cardiac chambers and is key to establish the cardiac phenotype and to rule out an underlying ischaemic aetiology. Furthermore, advanced imaging techniques enable deep cardiovascular phenotyping and non-invasive tissue characterization. The aim of this review is to propose a systematic approach to the diagnosis of DCM, emphasizing the importance of genetics and clinical findings for a precise and practical clinical approach. Also, we strive to qualify the role of cardiac imaging in the diagnosis of DCM, particularly on the relevance of novel techniques and clinical utility of actionable parameters to improve current diagnostic schemes and risk stratification algorithms. We further elaborate on the role of cardiac imaging to deliver optimal guidance to aetiology-based therapeutic approaches, verification of treatment response and disease progression monitoring.
Collapse
Affiliation(s)
- Kristian Galanti
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ghaith Sharaf Dabbagh
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania, USA
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- University Cardiology Division, Heart Department, SS. Annunziata Polyclinic, Chieti, Italy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Institute for Advanced Biomedical Technologies, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- University Cardiology Division, Heart Department, SS. Annunziata Polyclinic, Chieti, Italy
| | - Roberta Giansante
- Institute for Advanced Biomedical Technologies, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ron Jacob
- The Heart and Vascular Institute, Lancaster General Health/Penn Medicine, Lancaster, Pennsylvania, USA
| | - Edmond Obeng-Gyimah
- Perelman Clinical Electrophysiology Section, Cardiovascular Division, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leslie T Cooper
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjay K Prasad
- The Heart and Vascular Institute, Lancaster General Health/Penn Medicine, Lancaster, Pennsylvania, USA
- Department of Cardiology, Royal Brompton Hospital, London, UK
- Department of Cardiovascular Medicine, National Heart & Lung Institute, Imperial College, London, UK
| | - David H Birnie
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics (A.P.L.), School of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Saidi Mohiddin
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Mohammed Y Khanji
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Heart Centre, Barts Health NHS Trust, London, UK
- Barts Health NHS Trust, Newham University Hospital, London, UK
| | - Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania, USA
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Barts Heart Centre, Barts Health NHS Trust, London, UK
| |
Collapse
|
2
|
Malik MK, Kinno M, Liebo M, Yu MD, Syed M. Evolving role of myocardial fibrosis in heart failure with preserved ejection fraction. Front Cardiovasc Med 2025; 12:1573346. [PMID: 40336640 PMCID: PMC12055812 DOI: 10.3389/fcvm.2025.1573346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical diagnosis with a heterogeneous pathophysiology and clinical presentation. The hallmark of HFpEF is diastolic dysfunction associated with left ventricular remodeling and fibrosis. Myocardial interstitial fibrosis (MIF) occurs as the result of collagen deposition and is dependent on the underlying etiology of heart failure. Detection of MIF can be done by invasive histopathologic sampling or by imaging. More recently, novel biomarkers have been investigated as an alternative tool for not only the detection of MIF but also for the prognostication of patients with HFpEF which may in turn alleviate the need for invasive and expensive imaging in the future.
Collapse
Affiliation(s)
- Muhammad K. Malik
- Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, United States
- Department of Cardiology, Baylor Scott & White, The Heart Hospital, Plano, TX, United States
| | - Menhel Kinno
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, United States
- Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Max Liebo
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Mingxi D. Yu
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Mushabbar Syed
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, United States
| |
Collapse
|
3
|
Monteiro P, Peixoto T, Rodrigues P, Carvalho JG. CT and MR Imaging of Cardiomyopathies in Clinical Practice-An Approach After an Abnormal Echocardiogram or Electrocardiogram. Echocardiography 2025; 42:e70104. [PMID: 39963998 DOI: 10.1111/echo.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 05/10/2025] Open
Abstract
Cardiomyopathies represent a diverse group of myocardial disorders characterized by structural and functional abnormalities in the absence of significant coronary artery disease or other primary causes. This review highlights the diagnostic and prognostic value of cardiac magnetic resonance and computed tomography in the assessment of cardiomyopathies. While echocardiography remains the first-line imaging modality, cardiac magnetic resonance (CMR) and cardiac computerized tomography (CCT) offer superior tissue characterization, morphological assessment, and functional evaluation, crucial for phenotyping cardiomyopathies into hypertrophic, dilated, restrictive, arrhythmogenic, and non-dilated left ventricular subtypes. For hypertrophic cardiomyopathy, CMR enables precise identification of fibrosis, hypertrophy distribution, and risk stratification for sudden cardiac death. CMR is pivotal in identifying phenocopies, like cardiac amyloidosis and Anderson-Fabry disease, and differentiating between pathological and physiological remodeling in athlete's heart. For dilated cardiomyopathy, late gadolinium enhancement, T1 mapping, and extracellular volume measurements aid in distinguishing etiologies and predicting adverse outcomes. In arrhythmogenic right ventricular cardiomyopathy, CMR demonstrates superior sensitivity for detecting structural abnormalities in the right ventricle, and the presence of fibrosis which is associated with arrhythmic risk. CCT main roles are excluding coronary artery disease and complementing CMR. This review proposes a diagnostic pathway integrating multimodality imaging for clinical management in cardiomyopathies.
Collapse
Affiliation(s)
- Pedro Monteiro
- Department of Cardiology, Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Tiago Peixoto
- Department of Cardiology, Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Patrícia Rodrigues
- Department of Cardiology, Unidade Local de Saúde de Santo António, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João Gomes Carvalho
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Department of Radiology, Unidade Local de Saúde de Santo António, Porto, Portugal
| |
Collapse
|
4
|
Touma R, Pareddy AR, Abidov A. Value of Advanced Cardiac CTA in Clinical Assessment of Hypertrophic Cardiomyopathy: A Literature Review and Practical Implications. Echocardiography 2025; 42:e70111. [PMID: 39964029 DOI: 10.1111/echo.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 05/10/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac anomaly with a potentially unfavorable clinical outcome. The essential role of multimodality imaging in HCM is well recognized by major professional cardiac imaging societies and has been incorporated into the HCM clinical practice guidelines. Appropriate utilization of cardiac imaging tools is cardinal for accurate diagnosis and appropriate management for HCM patients to mitigate their lifelong risk of adverse events. Echocardiography is the imaging modality of choice for clinical diagnosis of HCM. Cardiac magnetic resonance (CMR) and coronary computed tomography angiogram (CCTA) offer complementary practical information for an inclusive evaluation in such patients. CCTA provides a thorough analysis of the cardiac anatomy and function that is paramount in HCM clinical decision-making. This review summarizes the utility of CCTA in the clinical assessment of patients with HCM. It outlines the multi-role of CCTA in HCM, including the quantification of cardiac parameters, myocardial tissue characterization, left ventricular (LV) functional analysis, the definition of cardiac and coronary arteries (CA) anatomy, and the provision of a roadmap for septal reduction therapies (SRT), mitral valve (MV) intervention, and atrial fibrillation (AF) ablation.
Collapse
Affiliation(s)
- Rabih Touma
- Department of Medicine/Division of Cardiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medicine/Division of Cardiology, John D. Dingell VA, Medical Center, Detroit, Michigan, USA
| | - Anisha R Pareddy
- Department of Medicine/Division of Cardiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medicine/Division of Cardiology, John D. Dingell VA, Medical Center, Detroit, Michigan, USA
| | - Aiden Abidov
- Department of Medicine/Division of Cardiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medicine/Division of Cardiology, John D. Dingell VA, Medical Center, Detroit, Michigan, USA
| |
Collapse
|
5
|
Telli T, Hosseini A, Settelmeier S, Kersting D, Kessler L, Weber WA, Rassaf T, Herrmann K, Varasteh Z. Imaging of Cardiac Fibrosis: How Far Have We Moved From Extracellular to Cellular? Semin Nucl Med 2024; 54:686-700. [PMID: 38493001 DOI: 10.1053/j.semnuclmed.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Myocardial fibrosis plays an important role in adverse outcomes such as heart failure and arrhythmias. As the pathological response and degree of scarring, and therefore clinical presentation varies from patient to patient, early detection of fibrosis is crucial for identifying the appropriate treatment approach and forecasting the progression of a disease along with the likelihood of disease-related mortality. Current imaging modalities provides information about either decreased function or extracellular signs of fibrosis. Targeting activated fibroblasts represents a burgeoning approach that could offer insights prior to observable functional alterations, presenting a promising focus for potential anti-fibrotic therapeutic interventions at cellular level. In this article, we provide an overview of imaging cardiac fibrosis and discuss the role of different advanced imaging modalities with the focus on novel non-invasive imaging of activated fibroblasts.
Collapse
Affiliation(s)
- Tugce Telli
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Atefeh Hosseini
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Stephan Settelmeier
- Westgerman Heart- and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Tienush Rassaf
- Westgerman Heart- and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Zohreh Varasteh
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
| |
Collapse
|
6
|
Gonciar D, Berciu AG, Dulf EH, Orzan RI, Mocan T, Danku AE, Lorenzovici N, Agoston-Coldea L. Computer-Assisted Algorithm for Quantification of Fibrosis by Native Cardiac CT: A Pilot Study. J Clin Med 2024; 13:4807. [PMID: 39200950 PMCID: PMC11355413 DOI: 10.3390/jcm13164807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Recent advances in artificial intelligence, particularly in cardiac imaging, can potentially enhance patients' diagnosis and prognosis and identify novel imaging markers. We propose an automated, computer-aided algorithm utilizing native cardiac computed tomography (CT) imaging to identify myocardial fibrosis. This study aims to evaluate its performance compared to CMR markers of fibrosis in a cohort of patients diagnosed with breast cancer. Methods: The study included patients diagnosed with early HER2+ breast cancer, who presented LV dysfunction (LVEF < 50%) and myocardial fibrosis detected on CMR at the time of diagnosis. The patients were also evaluated by cardiac CT, and the extracted images were processed for the implementation of the automatic, computer-assisted algorithm, which marked as fibrosis every pixel that fell within the range of 60-90 HU. The percentage of pixels with fibrosis was subsequently compared with CMR parameters. Results: A total of eight patients (n = 8) were included in the study. High positive correlations between the algorithm's result and the ECV fraction (r = 0.59, p = 0.126) and native T1 (r = 0.6, p = 0.112) were observed, and a very high positive correlation with LGE of the LV(g) and the LV-LGE/LV mass percentage (r = 0.77, p = 0.025; r = 0.81, p = 0.015). A very high negative correlation was found with GLS (r = -0.77, p = 0.026). The algorithm presented an intraclass correlation coefficient of 1 (95% CI 0.99-1), p < 0.001. Conclusions: The present pilot study proposes a novel promising imaging marker for myocardial fibrosis, generated by an automatic algorithm based on native cardiac CT images.
Collapse
Affiliation(s)
- Diana Gonciar
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.G.); (R.I.O.); (L.A.-C.)
| | - Alexandru-George Berciu
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
| | - Eva-Henrietta Dulf
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
| | - Rares Ilie Orzan
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.G.); (R.I.O.); (L.A.-C.)
| | - Teodora Mocan
- Physiology Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania
| | - Alex Ede Danku
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
| | - Noemi Lorenzovici
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.G.); (R.I.O.); (L.A.-C.)
| |
Collapse
|
7
|
Goldie FC, Lee MMY, Coats CJ, Nordin S. Advances in Multi-Modality Imaging in Hypertrophic Cardiomyopathy. J Clin Med 2024; 13:842. [PMID: 38337535 PMCID: PMC10856479 DOI: 10.3390/jcm13030842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal growth of the myocardium with myofilament disarray and myocardial hyper-contractility, leading to left ventricular hypertrophy and fibrosis. Where culprit genes are identified, they typically relate to cardiomyocyte sarcomere structure and function. Multi-modality imaging plays a crucial role in the diagnosis, monitoring, and risk stratification of HCM, as well as in screening those at risk. Following the recent publication of the first European Society of Cardiology (ESC) cardiomyopathy guidelines, we build on previous reviews and explore the roles of electrocardiography, echocardiography, cardiac magnetic resonance (CMR), cardiac computed tomography (CT), and nuclear imaging. We examine each modality's strengths along with their limitations in turn, and discuss how they can be used in isolation, or in combination, to facilitate a personalized approach to patient care, as well as providing key information and robust safety and efficacy evidence within new areas of research.
Collapse
Affiliation(s)
- Fraser C. Goldie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
| | - Matthew M. Y. Lee
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
| | - Caroline J. Coats
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Sabrina Nordin
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
8
|
Abraham MR, Abraham TP. Role of Imaging in the Diagnosis, Evaluation, and Management of Hypertrophic Cardiomyopathy. Am J Cardiol 2024; 212S:S14-S32. [PMID: 38368033 DOI: 10.1016/j.amjcard.2023.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 02/19/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is increasingly recognized and may benefit from the recent approval of new, targeted medical therapy. Successful management of HCM is dependent on early and accurate diagnosis. The lack of a definitive diagnostic test, the wide variation in phenotype and the commonness of phenocopy conditions, and the presence of normal or hyperdynamic left ventricular function in most patients makes HCM a condition that is highly dependent on imaging for all aspects of management including, diagnosis, classification, predicting risk of complications, detecting complications, identifying risk for ventricular arrhythmias, evaluating choice of therapy and monitoring therapy, intraprocedural guidance, and screening family members. Although echocardiographic imaging remains the mainstay in the diagnosis and subsequent management of HCM, this disease clearly requires multimethod imaging for various aspects of optimal patient care. Advances in echocardiography hardware and techniques, development and refinement of imaging with computed tomography, magnetic resonance, and nuclear scanning, and the emergence of very focused assessments such as diastology and fibrosis imaging have all advanced the diagnosis and management of HCM. In this review, we discuss the relative utility and evidence support for these imaging approaches to contribute to improve patient outcomes.
Collapse
Affiliation(s)
- Maria Roselle Abraham
- UCSF Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, California
| | - Theodore P Abraham
- UCSF Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
9
|
Moscatelli S, Leo I, Bianco F, Borrelli N, Beltrami M, Garofalo M, Milano EG, Bisaccia G, Iellamo F, Bassareo PP, Pradhan A, Cimini A, Perrone MA. The Role of Multimodality Imaging in Pediatric Cardiomyopathies. J Clin Med 2023; 12:4866. [PMID: 37510983 PMCID: PMC10381492 DOI: 10.3390/jcm12144866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of myocardial diseases representing the first cause of heart transplantation in children. Diagnosing and classifying the different phenotypes can be challenging, particularly in this age group, where cardiomyopathies are often overlooked until the onset of severe symptoms. Cardiovascular imaging is crucial in the diagnostic pathway, from screening to classification and follow-up assessment. Several imaging modalities have been proven to be helpful in this field, with echocardiography undoubtedly representing the first imaging approach due to its low cost, lack of radiation, and wide availability. However, particularly in this clinical context, echocardiography may not be able to differentiate from cardiomyopathies with similar phenotypes and is often complemented with cardiovascular magnetic resonance. The latter allows a radiation-free differentiation between different phenotypes with unique myocardial tissue characterization, thus identifying the presence and extent of myocardial fibrosis. Nuclear imaging and computed tomography have a complementary role, although they are less used in daily clinical practice due to the concern related to the use of radiation in pediatric patients. However, these modalities may have some advantages in evaluating children with cardiomyopathies. This paper aims to review the strengths and limitations of each imaging modality in evaluating pediatric patients with suspected or known cardiomyopathies.
Collapse
Affiliation(s)
- Sara Moscatelli
- Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK;
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 5NP, UK
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
- Cardiology Department, CMR Unit, Royal Brompton and Harefield Hospitals, Guys’ and St. Thomas’ NHS Trust, London SW3 5NP, UK
| | - Francesco Bianco
- Cardiovascular Sciences Department—AOU “Ospedali Riuniti”, 60126 Ancona, Italy;
| | - Nunzia Borrelli
- Adult Congenital Heart Disease Unit, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy;
| | | | - Manuel Garofalo
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy;
| | - Elena Giulia Milano
- Centre for Cardiovascular Imaging, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK;
| | - Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, “G.d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Ferdinando Iellamo
- Division of Cardiology and Cardio Lab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Pier Paolo Bassareo
- School of Medicine, University College of Dublin, Mater Misericordiae University Hospital and Children’s Health Ireland Crumlin, D07 R2WY Dublin, Ireland;
| | - Akshyaya Pradhan
- Department of Cardiology, King George’s Medical University, Lucknow 226003, India;
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Marco Alfonso Perrone
- Division of Cardiology and Cardio Lab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| |
Collapse
|
10
|
Penso M, Babbaro M, Moccia S, Baggiano A, Carerj ML, Guglielmo M, Fusini L, Mushtaq S, Andreini D, Pepi M, Pontone G, Caiani EG. A deep-learning approach for myocardial fibrosis detection in early contrast-enhanced cardiac CT images. Front Cardiovasc Med 2023; 10:1151705. [PMID: 37424918 PMCID: PMC10325686 DOI: 10.3389/fcvm.2023.1151705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Aims Diagnosis of myocardial fibrosis is commonly performed with late gadolinium contrast-enhanced (CE) cardiac magnetic resonance (CMR), which might be contraindicated or unavailable. Coronary computed tomography (CCT) is emerging as an alternative to CMR. We sought to evaluate whether a deep learning (DL) model could allow identification of myocardial fibrosis from routine early CE-CCT images. Methods and results Fifty consecutive patients with known left ventricular (LV) dysfunction (LVD) underwent both CE-CMR and (early and late) CE-CCT. According to the CE-CMR patterns, patients were classified as ischemic (n = 15, 30%) or non-ischemic (n = 35, 70%) LVD. Delayed enhancement regions were manually traced on late CE-CCT using CE-CMR as reference. On early CE-CCT images, the myocardial sectors were extracted according to AHA 16-segment model and labeled as with scar or not, based on the late CE-CCT manual tracing. A DL model was developed to classify each segment. A total of 44,187 LV segments were analyzed, resulting in accuracy of 71% and area under the ROC curve of 76% (95% CI: 72%-81%), while, with the bull's eye segmental comparison of CE-CMR and respective early CE-CCT findings, an 89% agreement was achieved. Conclusions DL on early CE-CCT acquisition may allow detection of LV sectors affected with myocardial fibrosis, thus without additional contrast-agent administration or radiational dose. Such tool might reduce the user interaction and visual inspection with benefit in both efforts and time.
Collapse
Affiliation(s)
- Marco Penso
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Mario Babbaro
- Department of Cardiology, IRCCS Policlinico San Donato, Milan, Italy
| | - Sara Moccia
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maria Ludovica Carerj
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical Sciences and Morphological and Functional Imaging, “G. Martino” University Hospital Messina, Messina, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, Netherlands
- Department of Cardiology, Haga Teaching Hospital, The Hague, Netherlands
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Daniele Andreini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mauro Pepi
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Enrico G. Caiani
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
- Department of Cardiology, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
11
|
Tore D, Faletti R, Gaetani C, Bozzo E, Biondo A, Carisio A, Menchini F, Miccolis M, Papa FP, Trovato M, Fonio P, Gatti M. Cardiac magnetic resonance of hypertrophic heart phenotype: A review. Heliyon 2023; 9:e17336. [PMID: 37441401 PMCID: PMC10333467 DOI: 10.1016/j.heliyon.2023.e17336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Hypertrophic heart phenotype is characterized by an abnormal left ventricular (LV) thickening. A hypertrophic phenotype can develop as adaptive response in many different conditions such as aortic stenosis, hypertension, athletic training, infiltrative heart muscle diseases, storage disorders and metabolic disorders. Hypertrophic cardiomyopathy (HCM) is the most frequent primary cardiomyopathy (CMP) and a genetical cause of cardiac hypertrophy. It requires the exclusion of any other cause of LV hypertrophy. Cardiac magnetic resonance (CMR) is a comprehensive imaging technique that allows a detailed evaluation of myocardial diseases. It provides reproducible measurements and myocardial tissue characterization. In clinical practice CMR is increasingly used to confirm the presence of ventricular hypertrophy, to detect the underlying cause of the phenotype and more recently as an efficient prognostic tool. This article aims to provide a detailed overview of the applications of CMR in the setting of hypertrophic heart phenotype and its role in the diagnostic workflow of such condition.
Collapse
Affiliation(s)
- Davide Tore
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Clara Gaetani
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Elena Bozzo
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Andrea Biondo
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Andrea Carisio
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Francesca Menchini
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Maria Miccolis
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Francesco Pio Papa
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Martina Trovato
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Paolo Fonio
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Chiocchi M, Cavallo AU, Pugliese L, Cesareni M, Pasquali D, Accardo G, De Stasio V, Spiritigliozzi L, Benelli L, D’Errico F, Cerimele C, Floris R, Garaci F, Di Donna C. Cardiac Computed Tomography Evaluation of Association of Left Ventricle Disfunction and Epicardial Adipose Tissue Density in Patients with Low to Intermediate Cardiovascular Risk. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020232. [PMID: 36837434 PMCID: PMC9960536 DOI: 10.3390/medicina59020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Background and objectives: Epicardial adipose tissue density (EAD) has been associated with coronary arteries calcium score, a higher load of coronary artery disease (CAD) and plaque vulnerability. This effect can be related to endocrine and paracrine effect of molecules produced by epicardial adipose tissue (EAT), that may influence myocardial contractility. Using coronary computed tomography angiography (CCT) the evaluation of EAD is possible in basal scans. The aim of the study is to investigate possible associations between EAD and cardiac function. Material and Methods: 93 consecutive patients undergoing CCT without and with contrast medium for known or suspected coronary CAD were evaluated. EAD was measured on basal scans, at the level of the coronary ostia, the lateral free wall of the left ventricle, at the level of the cardiac apex, and at the origin of the posterior interventricular artery. Cardiac function was evaluated in post-contrast CT scans in order to calculate ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), and stroke volume (SV). Results: A statistically significant positive correlation between EAD and ejection fraction (r = 0.29, p-value < 0.01) was found. Additionally, a statistically significant negative correlation between EAD and ESV (r = -0.25, p-value < 0.01) was present. Conclusion: EAD could be considered a new risk factor associated with reduced cardiac function. The evaluation of this parameter with cardiac CT in patients with low to intermediate cardiovascular risk is possible.
Collapse
Affiliation(s)
- Marcello Chiocchi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-3473154183
| | - Armando Ugo Cavallo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Radiology, Istituto Dermopatico dell’Immacolata, 00167 Rome, Italy
| | - Luca Pugliese
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Matteo Cesareni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniela Pasquali
- Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Giacomo Accardo
- ASL Salerno Ds 63 Poliambulatorio Costa d’Amalfi, 84013 Salerno, Italy
| | - Vincenzo De Stasio
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Spiritigliozzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Leonardo Benelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca D’Errico
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cecilia Cerimele
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Floris
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- IRCSS San Raffaele, 03043 Cassino, Italy
| | - Carlo Di Donna
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
13
|
Wengrofsky P, Akivis Y, Bukharovich I. Cardiac Multimodality Imaging in Hypertrophic Cardiomyopathy: What to Look for and When to Image. Curr Cardiol Rev 2023; 19:1-18. [PMID: 36927425 PMCID: PMC10518881 DOI: 10.2174/1573403x19666230316103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM), now recognized as a common cardiomyopathy of complex genomics and pathophysiology, is defined by the presence of left ventricular hypertrophy of various morphologies and severity, significant hemodynamic consequences, and diverse phenotypic, both structural and clinical, profiles. Advancements in cardiac multimodality imaging, including echocardiography, cardiac magnetic resonance imaging, and cardiac computed tomography, with and without angiography have greatly improved the diagnosis of HCM, and enable precise measurements of cardiac mass, volume, wall thickness, function, and physiology. Multimodality imaging provides comprehensive and complementary information and hasemerged as the bedrock for the diagnosis, clinical assessment, serial monitoring, and sudden cardiac death risk stratification of patients with HCM. This review highlights the role of cardiac multimodality imaging in the modern diagnosis and management of HCM.
Collapse
Affiliation(s)
- Perry Wengrofsky
- Division of Cardiology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Yonatan Akivis
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Inna Bukharovich
- Division of Cardiology, Department of Medicine, NYC Health and & Hospitals, Kings County, Brooklyn, NY 11203, USA
| |
Collapse
|
14
|
Verheul LM, Groeneveld SA, Kirkels FP, Volders PGA, Teske AJ, Cramer MJ, Guglielmo M, Hassink RJ. State-of-the-Art Multimodality Imaging in Sudden Cardiac Arrest with Focus on Idiopathic Ventricular Fibrillation: A Review. J Clin Med 2022; 11:4680. [PMID: 36012918 PMCID: PMC9410297 DOI: 10.3390/jcm11164680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic ventricular fibrillation is a rare cause of sudden cardiac arrest and a diagnosis by exclusion. Unraveling the mechanism of ventricular fibrillation is important for targeted management, and potentially for initiating family screening. Sudden cardiac arrest survivors undergo extensive clinical testing, with a growing role for multimodality imaging, before diagnosing "idiopathic" ventricular fibrillation. Multimodality imaging, considered as using multiple imaging modalities as diagnostics, is important for revealing structural myocardial abnormalities in patients with cardiac arrest. This review focuses on combining imaging modalities (echocardiography, cardiac magnetic resonance and computed tomography) and the electrocardiographic characterization of sudden cardiac arrest survivors and discusses the surplus value of multimodality imaging in the diagnostic routing of these patients. We focus on novel insights obtained through electrostructural and/or electromechanical imaging in apparently idiopathic ventricular fibrillation patients, with special attention to non-invasive electrocardiographic imaging.
Collapse
Affiliation(s)
- Lisa M. Verheul
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sanne A. Groeneveld
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Feddo P. Kirkels
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Paul G. A. Volders
- Department of Cardiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Arco J. Teske
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Maarten J. Cramer
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marco Guglielmo
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rutger J. Hassink
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
15
|
Baessato F, Romeo C, Rabbat MG, Pontone G, Meierhofer C. A Comprehensive Assessment of Cardiomyopathies through Cardiovascular Magnetic Resonance: Focus on the Pediatric Population. Diagnostics (Basel) 2022; 12:diagnostics12051022. [PMID: 35626178 PMCID: PMC9139185 DOI: 10.3390/diagnostics12051022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/26/2022] Open
Abstract
Cardiomyopathies (CMPs) are a heterogeneous group of diseases that involve the myocardium and result in systolic or diastolic impairment of the cardiac muscle, potentially leading to heart failure, malignant arrhythmias, or sudden cardiac death. Occurrence in pediatric age is rare but has been associated with worse outcomes. Non-invasive cardiac imaging techniques, integrated with clinical, genetic, and electrocardiographic data, have shown a pivotal role in the clinical work-up of such diseases by defining structural alterations and assessing potential complications. Above all modalities, cardiovascular magnetic resonance (CMR) has emerged as a powerful tool complementary to echocardiography to confirm diagnosis, provide prognostic information and guide therapeutic strategies secondary to its high spatial and temporal resolution, lack of ionizing radiation, and good reproducibility. Moreover, CMR can provide in vivo tissue characterization of the myocardial tissue aiding the identification of structural pathologic changes such as replacement or diffuse fibrosis, which are predictors of worse outcomes. Large prospective randomized studies are needed for further validation of CMR in the context of childhood CMPs. This review aims to highlight the role of advanced imaging with CMR in CMPs with particular reference to the dilated, hypertrophic and non-compacted phenotypes, which are more commonly seen in children.
Collapse
Affiliation(s)
- Francesca Baessato
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, 80636 Munich, Germany;
- Department of Cardiology, Regional Hospital S. Maurizio, 39100 Bolzano, Italy;
- Correspondence:
| | - Cristina Romeo
- Department of Cardiology, Regional Hospital S. Maurizio, 39100 Bolzano, Italy;
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University Medical Center, Chicago, IL 60153, USA;
| | - Gianluca Pontone
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| | - Christian Meierhofer
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, 80636 Munich, Germany;
| |
Collapse
|