1
|
Ketema EB, Lopaschuk GD. The Impact of Obesity on Cardiac Energy Metabolism and Efficiency in Heart Failure With Preserved Ejection Fraction. Can J Cardiol 2025:S0828-282X(25)00099-6. [PMID: 39892611 DOI: 10.1016/j.cjca.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025] Open
Abstract
The incidence and prevalence of heart failure with preserved ejection fraction (HFpEF) continues to rise, and now comprises more than half of all heart failure cases. There are many risk factors for HFpEF, including older age, hypertension, diabetes, dyslipidemia, sedentary behaviour, and obesity. The rising prevalence of obesity in society is a particularly important contributor to HFpEF development and severity. Obesity can adversely affect the heart, including inducing marked alterations in cardiac energy metabolism. This includes obesity-induced impairments in mitochondrial function, and an increase in fatty acid uptake and mitochondrial fatty acid β-oxidation. This increase in myocardial fatty acid metabolism is accompanied by an impaired myocardial insulin signaling and a marked decrease in glucose oxidation. This switch from glucose to fatty acid metabolism decreases cardiac efficiency and can contribute to severity of HFpEF. Increased myocardial fatty acid uptake in obesity is also associated with the accumulation of fatty acids, resulting in cardiac lipotoxicity. Obesity also results in dramatic changes in the release of adipokines, which can negatively impact cardiac function and energy metabolism. Obesity-induced increases in epicardial fat can also increase cardiac insulin resistance and negatively affect cardiac energy metabolism and HFpEF. However, optimizing cardiac energy metabolism in obese subjects may be one approach to preventing and treating HFpEF. This review discusses what is presently known about the effects of obesity on cardiac energy metabolism and insulin signaling in HFpEF. The clinical implications of obesity and energy metabolism on HFpEF are also discussed.
Collapse
Affiliation(s)
- Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada. https://twitter.com/Ketema
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Sun Q, Karwi QG, Wong N, Lopaschuk GD. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc Res 2024; 120:1996-2016. [PMID: 39453987 PMCID: PMC11646102 DOI: 10.1093/cvr/cvae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 10/27/2024] Open
Abstract
The very high energy demand of the heart is primarily met by adenosine triphosphate (ATP) production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure [including heart failure with reduced ejection fraction (HFrEF), heart failure with preserved EF (HFpEF), and diabetic cardiomyopathies] is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signalling and post-translational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John’s, NL A1B 3V6, Canada
| | - Nathan Wong
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
3
|
Huang Q, Yao Y, Wang Y, Li J, Chen J, Wu M, Guo C, Lou J, Yang W, Zhao L, Tong X, Zhao D, Li X. Ginsenoside Rb2 inhibits p300-mediated SF3A2 acetylation at lysine 10 to promote Fscn1 alternative splicing against myocardial ischemic/reperfusion injury. J Adv Res 2024; 65:365-379. [PMID: 38101749 PMCID: PMC11518965 DOI: 10.1016/j.jare.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Ginsenosides (GS) derived from Panax ginseng can regulate protein acetylation to promote mitochondrial function for protecting cardiomyocytes. However, the potential mechanisms of GS for regulating acetylation modification are not yet clear. OBJECTIVES This study aimed to explore the potential mechanisms of GS in regulating protein acetylation and identify ginsenoside monomer for fighting myocardial ischemia-related diseases. METHODS The 4D-lable free acetylomic analysis was employed to gain the acetylated proteins regulated by GS pretreatment. The co-immunoprecipitation assay, immunofluorescent staining, and mitochondrial respiration measurement were performed to detect the effect of GS or ginsenoside monomer on acetylated protein level and mitochondrial function. RNA sequencing, site-specific mutation, and shRNA interference were used to explore the downstream targets of acetylation modificationby GS. Cellular thermal shift assay and surface plasmon resonance were used for identifying the binding of ginsenoside with target protein. RESULTS In the cardiomyocytes of normal, oxygen glucose deprivation and/or reperfusion conditions, the acetylomic analysis identified that the acetylated levels of spliceosome proteins were inhibited by GS pretreatment and SF3A2 acetylation at lysine 10 (K10) was significantly decreased as a potential target of GS. Ginsenoside Rb2 was identified as one of the active ginsenoside monomers for reducing the acetylation of SF3A2 (K10), which enhanced mitochondrial respiration against myocardial ischemic injury in in vivo and in vitro experiments. RNA-seq analysis showed that ginsenoside Rb2 promoted alternative splicing of mitochondrial function-related genes and the level of fascin actin-bundling protein 1 (Fscn1) was obviously upregulated, which was dependent on SF3A2 acetylation. Critically, thermodynamic, kinetic and enzymatic experiments demonstrated that ginsenoside Rb2 directly interacted with p300 for inhibiting its activity. CONCLUSION These findings provide a novel mechanism underlying cardiomyocyte protection of ginsenoside Rb2 by inhibiting p300-mediated SF3A2 acteylation for promoting Fscn1 expression, which might be a promising approach for the prevention and treatment of myocardial ischemic diseases.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Yao Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Yisa Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jing Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jinjin Chen
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Mingxia Wu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Chen Guo
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jia Lou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Linhua Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Xiaolin Tong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| |
Collapse
|
4
|
Lee S, Jang DG, Kyoung YJ, Kim J, Kim ES, Hwang I, Youn JC, Kim JS, Kim IC. Proteome-wide Characterization and Pathophysiology Correlation in Non-ischemic Cardiomyopathies. Korean Circ J 2024; 54:468-481. [PMID: 38956938 PMCID: PMC11306425 DOI: 10.4070/kcj.2024.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue-based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies. METHODS Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography-mass spectrometry. Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings. RESULTS The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes. CONCLUSIONS Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.
Collapse
Affiliation(s)
- Seonhwa Lee
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Dong-Gi Jang
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yeon Ju Kyoung
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Eui-Soon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ilseon Hwang
- Department of Pathology, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Jong-Chan Youn
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| | - In-Cheol Kim
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea.
| |
Collapse
|
5
|
Shorthill SK, Jones TLM, Woulfe KC, Cherrington BD, Bruns DR. The influence of estrogen on myocardial post-translational modifications and cardiac function in women. Can J Physiol Pharmacol 2024; 102:452-464. [PMID: 38266237 DOI: 10.1139/cjpp-2023-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The lifetime risk of heart failure (HF) is comparable in men and women; nevertheless, disparities exist in our understanding of how HF differs between sexes. Several differences in cardiac physiology exist between men and women including the propensity to develop specific HF phenotypes. Men are more likely to be diagnosed with HF failure with reduced ejection fraction, while women have a greater propensity to develop HF with preserved ejection fraction. The mechanisms responsible for these differences remain unclear. Post-translational modifications (PTMs) of myofilament proteins likely contribute to these sex-specific propensities. The role of PTMs in heart disease is an expanding field with immense potential therapeutic targets. However, numerous PTMs remain underexplored, particularly in the context of the female heart. Estrogen, a key gonadal hormone, cardioprotective in pre-menopausal women and its loss with menopause likely contributes to disease in aging women. However, how estrogen regulates PTMs to contribute to HF development is not fully clear. This review outlines key sex differences in HF along with characterizing the contributions of novel myocardial PTMs in cardiac physiology and their regulation by estrogen. Collectively, we highlight the necessity for further investigation into women's heart health and the distinctive mechanisms distinguishing women from men.
Collapse
Affiliation(s)
| | - Timothy L M Jones
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathleen C Woulfe
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
6
|
Wen J, Chen C. From Energy Metabolic Change to Precision Therapy: a Holistic View of Energy Metabolism in Heart Failure. J Cardiovasc Transl Res 2024; 17:56-70. [PMID: 37450209 DOI: 10.1007/s12265-023-10412-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Heart failure (HF) is a complex and multifactorial disease that affects millions of people worldwide. It is characterized by metabolic disturbances of substrates such as glucose, fatty acids (FAs), ketone bodies, and amino acids, which lead to changes in cardiac energy metabolism pathways. These metabolic alterations can directly or indirectly promote myocardial remodeling, thereby accelerating the progression of HF, resulting in a vicious cycle of worsening symptoms, and contributing to the increased hospitalization and mortality among patients with HF. In this review, we summarized the latest researches on energy metabolic profiling in HF and provided the related translational therapeutic strategies for this devastating disease. By taking a holistic approach to understanding energy metabolism changes in HF, we hope to provide comprehensive insights into the pathophysiology of this challenging condition and identify novel precise targets for the development of more effective treatments.
Collapse
Affiliation(s)
- Jianpei Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
7
|
Ketema EB, Ahsan M, Zhang L, Karwi QG, Lopaschuk GD. Protein lysine acetylation does not contribute to the high rates of fatty acid oxidation seen in the post-ischemic heart. Sci Rep 2024; 14:1193. [PMID: 38216627 PMCID: PMC10786925 DOI: 10.1038/s41598-024-51571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024] Open
Abstract
High rates of cardiac fatty acid oxidation during reperfusion of ischemic hearts contribute to contractile dysfunction. This study aimed to investigate whether lysine acetylation affects fatty acid oxidation rates and recovery in post-ischemic hearts. Isolated working hearts from Sprague Dawley rats were perfused with 1.2 mM palmitate and 5 mM glucose and subjected to 30 min of ischemia and 40 min of reperfusion. Cardiac function, fatty acid oxidation, glucose oxidation, and glycolysis rates were compared between pre- and post-ischemic hearts. The acetylation status of enzymes involved in cardiac energy metabolism was assessed in both groups. Reperfusion after ischemia resulted in only a 41% recovery of cardiac work. Fatty acid oxidation and glycolysis rates increased while glucose oxidation rates decreased. The contribution of fatty acid oxidation to ATP production and TCA cycle activity increased from 90 to 93% and from 94.9 to 98.3%, respectively, in post-ischemic hearts. However, the overall acetylation status and acetylation levels of metabolic enzymes did not change in response to ischemia and reperfusion. These findings suggest that acetylation may not contribute to the high rates of fatty acid oxidation and reduced glucose oxidation observed in post-ischemic hearts perfused with high levels of palmitate substrate.
Collapse
Affiliation(s)
- Ezra B Ketema
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Muhammad Ahsan
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
8
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Hu M, You Y, Li Y, Ma S, Li J, Miao M, Quan Y, Yu W. Deacetylation of ACO2 Is Essential for Inhibiting Bombyx mori Nucleopolyhedrovirus Propagation. Viruses 2023; 15:2084. [PMID: 37896861 PMCID: PMC10612070 DOI: 10.3390/v15102084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a specific pathogen of Bombyx mori that can significantly impede agricultural development. Accumulating evidence indicates that the viral proliferation in the host requires an ample supply of energy. However, the correlative reports of baculovirus are deficient, especially on the acetylation modification of tricarboxylic acid cycle (TCA cycle) metabolic enzymes. Our recent quantitative analysis of protein acetylome revealed that mitochondrial aconitase (ACO2) could be modified by (de)acetylation at lysine 56 (K56) during the BmNPV infection; however, the underlying mechanism is yet unknown. In order to understand this regulatory mechanism, the modification site K56 was mutated to arginine (Lys56Arg; K56R) to mimic deacetylated lysine. The results showed that mimic deacetylated mitochondrial ACO2 restricted enzymatic activity. Although the ATP production was enhanced after viral infection, K56 deacetylation of ACO2 suppressed BmN cellular ATP levels and mitochondrial membrane potential by affecting citrate synthase and isocitrate dehydrogenase activities compared with wild-type ACO2. Furthermore, the deacetylation of exogenous ACO2 lowered BmNPV replication and generation of progeny viruses. In summary, our study on ACO2 revealed the potential mechanism underlying WT ACO2 promotes the proliferation of BmNPV and K56 deacetylation of ACO2 eliminates this promotional effect, which might provide novel insights for developing antiviral strategies.
Collapse
Affiliation(s)
- Miao Hu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Yi You
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Yao Li
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Shiyi Ma
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Jiaqi Li
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Meng Miao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
10
|
Ali MA, Qin Z, Dou S, Huang A, Wang Y, Yuan X, Zhang Y, Ni Q, Azmat R, Zeng C. Cryopreservation Induces Acetylation of Metabolism-Related Proteins in Boar Sperm. Int J Mol Sci 2023; 24:10983. [PMID: 37446160 DOI: 10.3390/ijms241310983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Cryodamage affects the normal physiological functions and survivability of boar sperm during cryopreservation. Lysine acetylation is thought to be an important regulatory mechanism in sperm functions. However, little is known about protein acetylation and its effects on cryotolerance or cryodamage in boar sperm. In this study, the characterization and protein acetylation dynamics of boar sperm during cryopreservation were determined using liquid chromatography-mass spectrometry (LC-MS). A total of 1440 proteins were identified out of 4705 modified proteins, and 2764 quantifiable sites were elucidated. Among the differentially modified sites, 1252 were found to be upregulated compared to 172 downregulated sites in fresh and frozen sperms. Gene ontology indicated that these differentially modified proteins are involved in metabolic processes and catalytic and antioxidant activities, which are involved in pyruvate metabolism, phosphorylation and lysine degradation. In addition, the present study demonstrated that the mRNA and protein expressions of SIRT5, IDH2, MDH2 and LDHC, associated with sperm quality parameters, are downregulated after cryopreservation. In conclusion, cryopreservation induces the acetylation and deacetylation of energy metabolism-related proteins, which may contribute to the post-thawed boar sperm quality parameters.
Collapse
Affiliation(s)
- Malik Ahsan Ali
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ziyue Qin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Dou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yihan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Yuan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyong Ni
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Rameesha Azmat
- Department of Biochemistry, Faculty of Science and Technology, Government College Women University, Faisalabad 38000, Pakistan
| | - Changjun Zeng
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
De Loof M, Renguet E, Ginion A, Bouzin C, Horman S, Beauloye C, Bertrand L, Bultot L. Enhanced protein acetylation initiates fatty acid-mediated inhibition of cardiac glucose transport. Am J Physiol Heart Circ Physiol 2023; 324:H305-H317. [PMID: 36607800 DOI: 10.1152/ajpheart.00449.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fatty acids (FAs) rapidly and efficiently reduce cardiac glucose uptake in the Randle cycle or glucose-FA cycle. This fine-tuned physiological regulation is critical to allow optimal substrate allocation during fasted and fed states. However, the mechanisms involved in the direct FA-mediated control of glucose transport have not been totally elucidated yet. We previously reported that leucine and ketone bodies, other cardiac substrates, impair glucose uptake by increasing global protein acetylation from acetyl-CoA. As FAs generate acetyl-CoA as well, we postulated that protein acetylation is enhanced by FAs and participates in their inhibitory action on cardiac glucose uptake. Here, we demonstrated that both palmitate and oleate promoted a rapid increase in protein acetylation in primary cultured adult rat cardiomyocytes, which correlated with an inhibition of insulin-stimulated glucose uptake. This glucose absorption deficit was caused by an impairment in the translocation of vesicles containing the glucose transporter GLUT4 to the plasma membrane, although insulin signaling remained unaffected. Interestingly, pharmacological inhibition of lysine acetyltransferases (KATs) prevented this increase in protein acetylation and glucose uptake inhibition induced by FAs. Similarly, FA-mediated inhibition of insulin-stimulated glucose uptake could be prevented by KAT inhibitors in perfused hearts. To summarize, enhanced protein acetylation can be considered as an early event in the FA-induced inhibition of glucose transport in the heart, explaining part of the Randle cycle.NEW & NOTEWORTHY Our results show that cardiac metabolic overload by oleate or palmitate leads to increased protein acetylation inhibiting GLUT4 translocation to the plasma membrane and glucose uptake. This observation suggests an additional regulation mechanism in the physiological glucose-FA cycle originally discovered by Randle.
Collapse
Affiliation(s)
- Marine De Loof
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Edith Renguet
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Audrey Ginion
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Caroline Bouzin
- Institute for Experimental and Clinical Research, Imaging platform (2IP), UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Laurent Bultot
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| |
Collapse
|
12
|
Hu M, Zhu Y, Mo Y, Gao X, Miao M, Yu W. Acetylation of citrate synthase inhibits Bombyx mori nucleopolyhedrovirus propagation by affecting energy metabolism. Microb Pathog 2022; 173:105890. [DOI: 10.1016/j.micpath.2022.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/08/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
|
13
|
Tu T, Qin F, Bai F, Xiao Y, Ma Y, Li B, Liu N, Zhang B, Sun C, Liao X, Zhou S, Liu Q. Quantitative acetylated proteomics on left atrial appendage tissues revealed atrial energy metabolism and contraction status in patients with valvular heart disease with atrial fibrillation. Front Cardiovasc Med 2022; 9:962036. [PMID: 36176981 PMCID: PMC9513032 DOI: 10.3389/fcvm.2022.962036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Background Numerous basic studies have demonstrated critical roles of metabolic and contractile remodeling in pathophysiological changes of atrial fibrillation (AF), but acetylation changes underlying atrial remodeling have not been fully elucidated. Quantitative acetylated proteomics enables researchers to identify a comprehensive map of protein alterations responsible for pathological development and progression of AF in the heart of patients. Materials and methods In this study, 18 samples (9 with chronic AF and 9 with sinus rhythm) of left atrial appendage (LAA) tissues were obtained during mitral valve replacement surgery. Changes in the quantitative acetylated proteome between the AF and sinus rhythm (SR) groups were studied by dimethyl labeling, acetylation affinity enrichment, and high-performance liquid chromatography-tandem mass spectrometry analysis. Results We identified a total of 5,007 acetylated sites on 1,330 acetylated proteins, among which 352 acetylated sites on 193 acetylated proteins were differentially expressed between the AF and SR groups by setting a quantification ratio of 1.3 for threshold value and P < 0.05 for significant statistical difference. The bioinformatics analysis showed that the differentially expressed acetylated proteins were mainly involved in energy metabolism and cellular contraction and structure function-related biological processes and pathways. Among 87 differentially expressed energy metabolism acetylated proteins related to the processes of fatty acid, carbohydrate, ketone body metabolism, and oxidative phosphorylation, nearly 87.1% Kac sites were upregulated (148 Kac sites among 170) in the AF group. Besides, generally declining acetylation of cardiac muscle contraction-related proteins (88.9% Kac sites of myosin) was found in the LAA of patients with AF. Immune coprecipitation combined with Western blotting was conducted to validate the differential expression of acetylated proteins. Conclusion Many differentially expressed energy metabolism and cellular contraction acetylated proteins were found in the LAA tissues of patients with chronic AF, and may reflect the impaired ATP production capacity and decreased atrial muscle contractility in the atrium during AF. Thus, acetylation may play an important regulatory role in metabolic and contractile remodeling of the atrium during AF. Moreover, the identified new acetylated sites and proteins may become promising targets for prevention and treatment of AF.
Collapse
Affiliation(s)
- Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fen Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Fen Qin,
| | - Fan Bai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yingxu Ma
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Biao Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Na Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Baojian Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Sun
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaobo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Qiming Liu,
| |
Collapse
|
14
|
Dubois-Deruy E, El Masri Y, Turkieh A, Amouyel P, Pinet F, Annicotte JS. Cardiac Acetylation in Metabolic Diseases. Biomedicines 2022; 10:biomedicines10081834. [PMID: 36009379 PMCID: PMC9405459 DOI: 10.3390/biomedicines10081834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Lysine acetylation is a highly conserved mechanism that affects several biological processes such as cell growth, metabolism, enzymatic activity, subcellular localization of proteins, gene transcription or chromatin structure. This post-translational modification, mainly regulated by lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) enzymes, can occur on histone or non-histone proteins. Several studies have demonstrated that dysregulated acetylation is involved in cardiac dysfunction, associated with metabolic disorder or heart failure. Since the prevalence of obesity, type 2 diabetes or heart failure rises and represents a major cause of cardiovascular morbidity and mortality worldwide, cardiac acetylation may constitute a crucial pathway that could contribute to disease development. In this review, we summarize the mechanisms involved in the regulation of cardiac acetylation and its roles in physiological conditions. In addition, we highlight the effects of cardiac acetylation in physiopathology, with a focus on obesity, type 2 diabetes and heart failure. This review sheds light on the major role of acetylation in cardiovascular diseases and emphasizes KATs and KDACs as potential therapeutic targets for heart failure.
Collapse
|
15
|
Muoio DM, Williams AS, Grimsrud PA. Mitochondrial lysine acylation and cardiometabolic stress: Truth or consequence? CURRENT OPINION IN PHYSIOLOGY 2022; 27:100551. [PMID: 39606008 PMCID: PMC11601992 DOI: 10.1016/j.cophys.2022.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Disruptions in oxidative metabolism are often accompanied by tissue accumulation of catabolic carbon intermediates, including acyl CoA molecules that can react with the epsilon amino group of lysine residues on cellular proteins. In general, acyl-lysine post-translational modifications (PTMs) on mitochondrial proteins correlate negatively with energy homeostasis and are offset by the mitochondrial sirtuins, a prominent family of NAD+-dependent deacylases linked favorably to longevity and metabolic resilience. Whereas studies over the past decade elicited widespread conjecture as to the far-reaching regulatory roles of these PTMs, more recent work has stirred controversy in this field of study. This review draws attention to discrepancies in the science, challenges current dogma, and encourages new perspectives on the physiological relevance of mitochondrial lysine acylation.
Collapse
Affiliation(s)
- Deborah M. Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute
- Departments of Medicine, Duke Molecular Physiology Institute
- Pharmacology and Cancer Biology. Duke Molecular Physiology Institute
| | - Ashley S. Williams
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute
| | - Paul A. Grimsrud
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute
- Departments of Medicine, Duke Molecular Physiology Institute
| |
Collapse
|
16
|
Murugasamy K, Munjal A, Sundaresan NR. Emerging Roles of SIRT3 in Cardiac Metabolism. Front Cardiovasc Med 2022; 9:850340. [PMID: 35369299 PMCID: PMC8971545 DOI: 10.3389/fcvm.2022.850340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
The heart is a highly metabolically active organ that predominantly utilizes fatty acids as an energy substrate. The heart also derives some part of its energy by oxidation of other substrates, including glucose, lactose, amino acids and ketones. The critical feature of cardiac pathology is metabolic remodeling and loss of metabolic flexibility. Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins (SIRT1 to SIRT7), with NAD+ dependent deacetylase activity. SIRT3 is expressed in high levels in healthy hearts but downregulated in the aged or diseased hearts. Experimental evidence shows that increasing SIRT3 levels or activity can ameliorate several cardiac pathologies. The primary deacetylation targets of SIRT3 are mitochondrial proteins, most of which are involved in energy metabolism. Thus, SIRT3 improves cardiac health by modulating cardiac energetics. In this review, we discuss the essential role of SIRT3 in regulating cardiac metabolism in the context of physiology and pathology. Specifically, we summarize the recent advancements that emphasize the critical role of SIRT3 as a master regulator of cardiac metabolism. We also present a comprehensive view of all known activators of SIRT3, and elaborate on their therapeutic potential to ameliorate energetic abnormalities in various cardiac pathologies.
Collapse
|
17
|
Karwi QG, Sun Q, Lopaschuk GD. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells 2021; 10:cells10113259. [PMID: 34831481 PMCID: PMC8621814 DOI: 10.3390/cells10113259] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes is a major risk factor for the development of cardiovascular disease via contributing and/or triggering significant cellular signaling and metabolic and structural alterations at the level of the heart and the whole body. The main cause of mortality and morbidity in diabetic patients is cardiovascular disease including diabetic cardiomyopathy. Therefore, understanding how diabetes increases the incidence of diabetic cardiomyopathy and how it mediates the major perturbations in cell signaling and energy metabolism should help in the development of therapeutics to prevent these perturbations. One of the significant metabolic alterations in diabetes is a marked increase in cardiac fatty acid oxidation rates and the domination of fatty acids as the major energy source in the heart. This increased reliance of the heart on fatty acids in the diabetic has a negative impact on cardiac function and structure through a number of mechanisms. It also has a detrimental effect on cardiac efficiency and worsens the energy status in diabetes, mainly through inhibiting cardiac glucose oxidation. Furthermore, accelerated cardiac fatty acid oxidation rates in diabetes also make the heart more vulnerable to ischemic injury. In this review, we discuss how cardiac energy metabolism is altered in diabetic cardiomyopathy and the impact of cardiac insulin resistance on the contribution of glucose and fatty acid to overall cardiac ATP production and cardiac efficiency. Furthermore, how diabetes influences the susceptibility of the myocardium to ischemia/reperfusion injury and the role of the changes in glucose and fatty acid oxidation in mediating these effects are also discussed.
Collapse
Affiliation(s)
- Qutuba G. Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Qiuyu Sun
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Gary D. Lopaschuk
- 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Correspondence: ; Tel.: +1-780-492-2170; Fax: +1-780-492-9753
| |
Collapse
|