1
|
Zahid R, Wang J, Cai Z, Ishtiaq A, Liu M, Ma D, Liang Y, Xu Y. Single chain fragment variable, a new theranostic approach for cardiovascular diseases. Front Immunol 2024; 15:1443290. [PMID: 39735545 PMCID: PMC11671482 DOI: 10.3389/fimmu.2024.1443290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a significant global health challenge, leading to substantial morbidity and mortality. Despite recent advancements in CVD management, pharmaceutical treatments often suffer from poor pharmacokinetics and high toxicity. With the rapid progress of modern molecular biology and immunology, however, single-chain fragment variable (scFv) molecule engineering has emerged as a promising theranostic tool to offer specificity and versatility in targeting CVD-related antigens. To represent the latest development on the potential of scFv in the context of CVDs, this review summarized the new mechanism of action and applications as therapeutic, as well as diagnostic agents. Furthermore, the advantages of scFv, including its small size, ease of modification, and ability to be engineered for enhanced affinity and specificity, are also described. Finally, such challenges as immunogenicity, stability, and scalability, alongside strategies to overcome these hurdles, are deeply scrutinized to provide safer and more effective strategies for the diagnosis and treatment of the incurable CVDs.
Collapse
Affiliation(s)
- Rukhshan Zahid
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Zecheng Cai
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Ayesha Ishtiaq
- College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Dan Ma
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Yan Liang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
2
|
Maffia P, Mauro C, Case A, Kemper C. Canonical and non-canonical roles of complement in atherosclerosis. Nat Rev Cardiol 2024; 21:743-761. [PMID: 38600367 DOI: 10.1038/s41569-024-01016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular diseases are the leading cause of death globally, and atherosclerosis is the major contributor to the development and progression of cardiovascular diseases. Immune responses have a central role in the pathogenesis of atherosclerosis, with the complement system being an acknowledged contributor. Chronic activation of liver-derived and serum-circulating canonical complement sustains endothelial inflammation and innate immune cell activation, and deposition of complement activation fragments on inflamed endothelial cells is a hallmark of atherosclerotic plaques. However, increasing evidence indicates that liver-independent, cell-autonomous and non-canonical complement activities are underappreciated contributors to atherosclerosis. Furthermore, complement activation can also have atheroprotective properties. These specific detrimental or beneficial contributions of the complement system to the pathogenesis of atherosclerosis are dictated by the location of complement activation and engagement of its canonical versus non-canonical functions in a temporal fashion during atherosclerosis progression. In this Review, we summarize the classical and the emerging non-classical roles of the complement system in the pathogenesis of atherosclerosis and discuss potential strategies for therapeutic modulation of complement for the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild, Accra, Ghana
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ayden Case
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
3
|
Alam MA, Caocci M, Ren M, Chen Z, Liu F, Khatun MS, Kolls JK, Qin X, Burdo TH. Deficiency of Caspase-1 Attenuates HIV-1-Associated Atherogenesis in Mice. Int J Mol Sci 2023; 24:12871. [PMID: 37629052 PMCID: PMC10454548 DOI: 10.3390/ijms241612871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Within arterial plaque, HIV infection creates a state of inflammation and immune activation, triggering NLRP3/caspase-1 inflammasome, tissue damage, and monocyte/macrophage infiltration. Previously, we documented that caspase-1 activation in myeloid cells was linked with HIV-associated atherosclerosis in mice and people with HIV. Here, we mechanistically examined the direct effect of caspase-1 on HIV-associated atherosclerosis. Caspase-1-deficient (Casp-1-/-) mice were crossed with HIV-1 transgenic (Tg26+/-) mice with an atherogenic ApoE-deficient (ApoE-/-) background to create global caspase-1-deficient mice (Tg26+/-/ApoE-/-/Casp-1-/-). Caspase-1-sufficient (Tg26+/-/ApoE-/-/Casp-1+/+) mice served as the controls. Next, we created chimeric hematopoietic cell-deficient mice by reconstituting irradiated ApoE-/- mice with bone marrow cells transplanted from Tg26+/-/ApoE-/-/Casp-1-/- (BMT Casp-1-/-) or Tg26+/-/ApoE-/-/Casp-1+/+ (BMT Casp-1+/+) mice. Global caspase-1 knockout in mice suppressed plaque deposition in the thoracic aorta, serum IL-18 levels, and ex vivo foam cell formation. The deficiency of caspase-1 in hematopoietic cells resulted in reduced atherosclerotic plaque burden in the whole aorta and aortic root, which was associated with reduced macrophage infiltration. Transcriptomic analyses of peripheral mononuclear cells and splenocytes indicated that caspase-1 deficiency inhibited caspase-1 pathway-related genes. These results document the critical atherogenic role of caspase-1 in chronic HIV infection and highlight the implication of this pathway and peripheral immune activation in HIV-associated atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Maurizio Caocci
- Department of Microbiology, Immunology and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Mi Ren
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zheng Chen
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Fengming Liu
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mst Shamima Khatun
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.S.K.); (J.K.K.)
| | - Jay K. Kolls
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.S.K.); (J.K.K.)
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Tricia H. Burdo
- Department of Microbiology, Immunology and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
4
|
Hu C, Wang Y, Huang W, Xia Y. E prostanoid receptor-3 promotes oxidized low-density lipoprotein-induced human aortic smooth muscle cells inflammation. ESC Heart Fail 2023; 10:1077-1089. [PMID: 36578105 PMCID: PMC10053191 DOI: 10.1002/ehf2.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 11/27/2022] [Indexed: 12/30/2022] Open
Abstract
AIM The progression of atherosclerosis can lead to the occurrence of multiple cardiovascular diseases (coronary heart disease, etc.). E prostanoid receptor-3 (EP3) is known to participate in the progression of atherosclerosis. This study aimed to investigate the mechanism by which EP3 modulates the development of atherosclerosis. METHODS AND RESULTS ApoE-/- mice were used to construct in vivo model of atherosclerosis. Human aortic smooth muscle cells (HASMCs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to construct in vitro model of atherosclerosis. mRNA expressions were assessed by qRT-PCR, and western blot was applied to assess the protein levels. CCK-8 assay was applied to assess the cell viability. The inflammatory cytokines levels were assessed by enzyme-linked immunosorbent assay, and flow cytometry was applied to assess cell apoptosis. In vivo experiment was constructed to investigate the impact of EP3 in atherosclerosis development. L-798106 (EP3 inhibitor) significantly inhibited the levels of pro-inflammatory cytokines in atherosclerosis in vivo. EP3 inhibitor (L-798106) significantly reversed ox-LDL-caused HASMCs injury via inhibiting the apoptosis and inflammatory responses (P < 0.05). The levels of interleukin-17 (IL-17) and intercellular adhesion molecule-1 (ICAM-1) in HASMCs were elevated by ox-LDL, whereas L-798106 or knockdown of cyclic AMP (cAMP) response element-binding protein (CREB) notably restored this phenomenon (P < 0.05). EP3 overexpression further aggravated ox-LDL-induced inflammation in HASMCs, and EP3 up-regulated the levels of IL-17 and ICAM-1 in ox-LDL-treated HASMCs (P < 0.05). EP3 up-regulation promoted the inflammatory responses in ox-LDL-treated HASMCs through mediation of cAMP/protein kinase A (PKA)/CREB/IL-17/ICAM-1 axis (P < 0.05). CONCLUSIONS EP3 inhibitor alleviates ox-LDL-induced HASMC inflammation via mediation of cAMP/PKA/CREB/IL-17/ICAM-1 axis. Our study might shed new lights on discovering novel strategies against atherosclerosis.
Collapse
Affiliation(s)
- Chuang‐Jia Hu
- Department of CardiologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdong ProvinceChina
- Laboratory of Molecular CardiologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdong ProvinceChina
- Laboratory of Medical Molecular ImagingFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Yan‐Wei Wang
- Department of CardiologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Wei‐Xing Huang
- Department of Cardiac SurgeryFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Yu‐Bin Xia
- Department of NephrologyFirst Affiliated Hospital of Shantou University Medical CollegeNo. 57, Changping RdShantou515000Guangdong ProvinceChina
| |
Collapse
|
5
|
Wasiak S, Tsujikawa LM, Daze E, Gilham D, Stotz SC, Rakai BD, Sarsons CD, Fu L, Azhar S, Jahagirdar R, Sweeney M, Johansson JO, Wong NCW, Kulikowski E. Epigenetic BET reader inhibitor apabetalone (RVX-208) counters proinflammatory aortic gene expression in a diet induced obesity mouse model and in human endothelial cells. Atherosclerosis 2023; 364:10-19. [PMID: 36455344 DOI: 10.1016/j.atherosclerosis.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS Obese patients are at risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). A lipid-rich diet promotes arterial changes by inducing hypertension, oxidative stress, and inflammation. Bromodomain and extraterminal (BET) proteins contribute to endothelial and immune cell activation in vitro and in atherosclerosis mouse models. We aim to determine if BET inhibition can reduce lipid-rich diet-induced vascular inflammation in mice. METHODS Body weight, serum glucose and lipid levels were measured in mice fed a high-fat diet (HFD) or low-fat diet (LFD) for 6 weeks and at study termination. BET inhibitors apabetalone and JQ1 were co-administered with the HFD for additional 16 weeks. Aortic gene expression was analyzed post necropsy by PCR, Nanostring nCounter® Inflammation Panel and bioinformatics pathway analysis. Transcription changes and BRD4 chromatin occupancy were analyzed in primary human endothelial cells in response to TNFα and apabetalone. RESULTS HFD induced weight gain, visceral obesity, high fasting blood glucose, glucose intolerance and insulin resistance compared to LFD controls. HFD upregulated the aortic expression of 47 genes involved in inflammation, innate immunity, cytoskeleton and complement pathways. Apabetalone and JQ1 treatment reduced HFD-induced aortic expression of proinflammatory genes. Congruently, bioinformatics predicted enhanced signaling by TNFα in the HFD versus LFD aorta, which was countered by BETi treatment. TNFα-stimulated human endothelial cells had increased expression of HFD-sensitive genes and higher BRD4 chromatin occupancy, which was countered by apabetalone treatment. CONCLUSIONS HFD induces vascular inflammation in mice through TNFα signaling. Apabetalone treatment reduces this proinflammatory phenotype, providing mechanistic insight into how BET inhibitors may reduce CVD risk in obese patients.
Collapse
Affiliation(s)
- Sylwia Wasiak
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Laura M Tsujikawa
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Emily Daze
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Dean Gilham
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Stephanie C Stotz
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Brooke D Rakai
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Chris D Sarsons
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Salman Azhar
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Ravi Jahagirdar
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Michael Sweeney
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA, 94105
| | - Jan O Johansson
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA, 94105
| | - Norman C W Wong
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Ewelina Kulikowski
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada.
| |
Collapse
|
6
|
Seidel F, Kleemann R, van Duyvenvoorde W, van Trigt N, Keijzer N, van der Kooij S, van Kooten C, Verschuren L, Menke A, Kiliaan AJ, Winter J, Hughes TR, Morgan BP, Baas F, Fluiter K, Morrison MC. Therapeutic Intervention with Anti-Complement Component 5 Antibody Does Not Reduce NASH but Does Attenuate Atherosclerosis and MIF Concentrations in Ldlr-/-.Leiden Mice. Int J Mol Sci 2022; 23:ijms231810736. [PMID: 36142647 PMCID: PMC9506266 DOI: 10.3390/ijms231810736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Chronic inflammation is an important driver in the progression of non-alcoholic steatohepatitis (NASH) and atherosclerosis. The complement system, one of the first lines of defense in innate immunity, has been implicated in both diseases. However, the potential therapeutic value of complement inhibition in the ongoing disease remains unclear. Methods: After 20 weeks of high-fat diet (HFD) feeding, obese Ldlr-/-.Leiden mice were treated twice a week with an established anti-C5 antibody (BB5.1) or vehicle control. A separate group of mice was kept on a chow diet as a healthy reference. After 12 weeks of treatment, NASH was analyzed histopathologically, and genome-wide hepatic gene expression was analyzed by next-generation sequencing and pathway analysis. Atherosclerotic lesion area and severity were quantified histopathologically in the aortic roots. Results: Anti-C5 treatment considerably reduced complement system activity in plasma and MAC deposition in the liver but did not affect NASH. Anti-C5 did, however, reduce the development of atherosclerosis, limiting the total lesion size and severity independently of an effect on plasma cholesterol but with reductions in oxidized LDL (oxLDL) and macrophage migration inhibitory factor (MIF). Conclusion: We show, for the first time, that treatment with an anti-C5 antibody in advanced stages of NASH is not sufficient to reduce the disease, while therapeutic intervention against established atherosclerosis is beneficial to limit further progression.
Collapse
Affiliation(s)
- Florine Seidel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
- Department Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6525 EZ Nijmegen, The Netherlands
- Correspondence:
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| | - Nikki van Trigt
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| | - Nanda Keijzer
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| | - Sandra van der Kooij
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands
| | - Aswin Menke
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| | - Amanda J. Kiliaan
- Department Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6525 EZ Nijmegen, The Netherlands
| | - Johnathan Winter
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Timothy R. Hughes
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - B. Paul Morgan
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| |
Collapse
|
7
|
Kiss MG, Binder CJ. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 2022; 351:29-40. [DOI: 10.1016/j.atherosclerosis.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|