1
|
Greco A, Martínez-Barrios E, Cruzalegui J, Cesar S, Chipa F, Díez-Escuté N, Cerralbo P, Zschaeck I, Loredo P, Sarquella-Brugada G, Campuzano O. Brugada Syndrome and GPD1L: Definite Genotype-Phenotype Association? CARDIOGENETICS 2025; 15:9. [DOI: 10.3390/cardiogenetics15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
The GPD1L gene encodes a small cytoplasmic protein that is involved in the regulation of sodium currents. Alterations in this gene have been associated with Brugada syndrome. This rare arrhythmogenic syndrome is characterized by a typical electrocardiographic pattern, incomplete penetrance, variable expressivity, and risk of sudden cardiac death. To date, few families with a clinical diagnosis of Brugada syndrome caused by a rare alteration in the GPD1L gene have been reported worldwide. The increase in data focused on genetic variants allows us to improve the interpretation of their role in Brugada syndrome. In our study, we have compiled the GPD1L variants reported so far in patients with a definitive clinical diagnosis or suspected Brugada syndrome. We performed an exhaustive update and interpretation of each variant following the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Our results showed that none of the variants described to date can be classified as truly harmful in Brugada syndrome. Despite this fact, more clinical and genetic data are needed to definitively rule out the GPD1L gene as a cause of Brugada syndrome. In summary, to date, there is insufficient evidence to conclude a definitive association between GPD1L and Brugada syndrome.
Collapse
Affiliation(s)
- Andrea Greco
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| | - Estefanía Martínez-Barrios
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
- Medical Science Department, School of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - José Cruzalegui
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| | - Sergi Cesar
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| | - Fredy Chipa
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| | - Nuria Díez-Escuté
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| | - Patricia Cerralbo
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| | - Irene Zschaeck
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| | - Paula Loredo
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
- Universidade Luterana do Brasil (ULBRA), Medical Department, Clínica Médica, Canoas CEP 92425-900, RS, Brazil
| | - Georgia Sarquella-Brugada
- Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
- Medical Science Department, School of Medicine, Universitat de Girona, 17003 Girona, Spain
- Pediatrics Department, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, Universitat de Girona, 17003 Girona, Spain
- Centro Investigación Biomédica en Red-Cardiovascular (CIBERCV), 28029 Madrid, Spain
- Institut d’Investigació Biomèdiques de Girona (IDIBGI-CERCA), 17190 Salt, Spain
| |
Collapse
|
2
|
Semino F, Darche FF, Bruehl C, Koenen M, Skladny H, Katus HA, Frey N, Draguhn A, Schweizer PA. GPD1L-A306del modifies sodium current in a family carrying the dysfunctional SCN5A-G1661R mutation associated with Brugada syndrome. Pflugers Arch 2024; 476:229-242. [PMID: 38036776 DOI: 10.1007/s00424-023-02882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Loss-of-function variants of SCN5A, encoding the sodium channel alpha subunit Nav1.5 are associated with high phenotypic variability and multiple cardiac presentations, while underlying mechanisms are incompletely understood. Here we investigated a family with individuals affected by Brugada Syndrome (BrS) of different severity and aimed to unravel the underlying genetic and electrophysiological basis.Next-generation sequencing was used to identify the genetic variants carried by family members. The index patient, who was severely affected by arrhythmogenic BrS, carried previously uncharacterized variants of Nav1.5 (SCN5A-G1661R) and glycerol-3-phosphate dehydrogenase-1-like protein (GPD1L-A306del) in a double heterozygous conformation. Family members exclusively carrying SCN5A-G1661R showed asymptomatic Brugada ECG patterns, while another patient solely carrying GPD1L-A306del lacked any clinical phenotype.To assess functional mechanisms, Nav1.5 channels were transiently expressed in HEK-293 cells in the presence and absence of GPD1L. Whole-cell patch-clamp recordings revealed loss of sodium currents after homozygous expression of SCN5A-G1661R, and reduction of current amplitude to ~ 50% in cells transfected with equal amounts of wildtype and mutant Nav1.5. Co-expression of wildtype Nav1.5 and GPD1L showed a trend towards increased sodium current amplitudes and a hyperpolarizing shift in steady-state activation and -inactivation compared to sole SCN5A expression. Application of the GPD1L-A306del variant shifted steady-state activation to more hyperpolarized and inactivation to more depolarized potentials.In conclusion, SCN5A-G1661R produces dysfunctional channels and associates with BrS. SCN5A mediated currents are modulated by co-expression of GDP1L and this interaction is altered by mutations in both proteins. Thus, additive genetic burden may aggravate disease severity, explaining higher arrhythmogenicity in double mutation carriers.
Collapse
Affiliation(s)
- Francesca Semino
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Fabrice F Darche
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
| | - Claus Bruehl
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Michael Koenen
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Heyko Skladny
- SYNLAB MVZ Humangenetik Mannheim GmbH, Mannheim, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
3
|
Li L, Yuan L, Zheng W, Yang Y, Deng X, Song Z, Deng H. An SCN1A gene missense variant in a Chinese Tujia ethnic family with genetic epilepsy with febrile seizures plus. Front Neurol 2023; 14:1229569. [PMID: 37576022 PMCID: PMC10412811 DOI: 10.3389/fneur.2023.1229569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFSP) is a familial epileptic syndrome that is genetically heterogeneous and inherited in an autosomal dominant form in most cases. To date, at least seven genes have been reported to associate with GEFSP. This study aimed to identify the disease-causing variant in a Chinese Tujia ethnic family with GEFSP by using whole exome sequencing, Sanger sequencing, and in silico prediction. A heterozygous missense variant c.5725A>G (p.T1909A) was identified in the sodium voltage-gated channel alpha subunit 1 gene (SCN1A) coding region. The variant co-segregated with the GEFSP phenotype in this family, and it was predicted as disease-causing by multiple in silico programs, which was proposed as the genetic cause of GEFSP, further genetically diagnosed as GEFSP2. These findings expand the genetic and phenotypic spectrum of GEFSP and should contribute to genetic diagnoses, personalized therapies, and prognoses.
Collapse
Affiliation(s)
- Ling Li
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| |
Collapse
|
4
|
Fan Z, Wu S, Sang H, Li Q, Cheng S, Zhu H. Identification of GPD1L as a Potential Prognosis Biomarker and Associated with Immune Infiltrates in Lung Adenocarcinoma. Mediators Inflamm 2023; 2023:9162249. [PMID: 37035759 PMCID: PMC10079383 DOI: 10.1155/2023/9162249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 03/18/2023] [Indexed: 04/03/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent pathological kinds of lung cancer, which is a common form of cancer that has a high death rate. Over the past several years, growing studies have indicated that GPD1L was involved in the advancement of a number of different cancers. However, its clinical significance in LUAD has not been investigated. In this study, following an examination of the TGCA datasets, we found that GPD1L displayed a dysregulated state in a wide variety of cancers; this led us to believe that GPD1L is an essential regulator in the progression of malignancies. In addition, we found that the expression of GPD1L was much lower in LUAD tissues when compared with nontumor specimens. According to the findings of ROC tests, GPD1L was able to effectively identify LUAD specimens from nontumor samples with an AUC value of 0.828 (95% confidence interval: 0.793 to 0.863). On the basis of the clinical study, a low expression of GPD1L was clearly related with both the N stage and the clinical stage. Moreover, based on the findings of a Kaplan-Meier survival study, elevated GPD1L expression was a strong indicator of considerably improved overall survival (OS) and disease-specific survival (DSS). GPD1L expression and clinical stages were found to be independent prognostic indicators for overall survival and disease-free survival in LUAD patients, according to multivariate analyses. Based on multivariate analysis, the C-indexes and calibration plots of the nomogram demonstrated an effective prediction performance for LUAD patients. Besides, the expression of GPD1L was positively related to mast cells, eosinophils, Tcm, TFH, iDC, DC, and macrophages, while negatively associated with Th2 cells, NK CD56dim cells, Tgd, Treg, and neutrophils. Finally, qRT-PCR was able to demonstrate that GPD1L had a significant amount of expression in LUAD. Additionally, according to the results of functional tests, overexpression of GPD1L had a significant inhibiting effect on the proliferation of LUAD cells. In general, the results of our study suggested that GPD1L had the potential to serve as a diagnostic and prognostic marker for LUAD.
Collapse
|
5
|
Fan K, Guo Y, Song Z, Yuan L, Zheng W, Hu X, Gong L, Deng H. The TSC2 c.2742+5G>A variant causes variable splicing changes and clinical manifestations in a family with tuberous sclerosis complex. Front Mol Neurosci 2023; 16:1091323. [PMID: 37152430 PMCID: PMC10157042 DOI: 10.3389/fnmol.2023.1091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/16/2023] [Indexed: 05/09/2023] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a genetic, variably expressed, multisystem disease characterized by benign tumors. It is caused by pathogenic variants of the TSC complex subunit 1 gene (TSC1) and the TSC complex subunit 2 gene (TSC2). Genetic testing allows for early diagnosis, genetic counseling, and improved outcomes, but it did not identify a pathogenic variant in up to 25% of all TSC patients. This study aimed to identify the disease-causing variant in a Han-Chinese family with TSC. Methods A six-member, three-generation Han-Chinese family with TSC and three unrelated healthy women were recruited. A comprehensive medical examination, a 3-year follow-up, whole exome sequencing, Sanger sequencing, and segregation analysis were performed in the family. The splicing analysis results obtained from six in silico tools, minigene assay, and patients' lymphocyte messenger RNA were compared, and quantitative reverse transcription PCR was used to confirm the pathogenicity of the variant. Results Two affected family members had variable clinical manifestations including a rare bilateral cerebellar ataxia symptom. The 3-year follow-up results suggest the effects of a combined treatment of anti-epilepsy drugs and sirolimus for TSC-related epilepsy and cognitive deficits. Whole exome sequencing, Sanger sequencing, segregation analysis, splicing analysis, and quantitative reverse transcription PCR identified the TSC2 gene c.2742+5G>A variant as the genetic cause. This variant inactivated the donor splice site, a cryptic non-canonical splice site was used for different splicing changes in two affected subjects, and the resulting mutant messenger RNA may be degraded by nonsense-mediated decay. The defects of in silico tools and minigene assay in predicting cryptic splice sites were suggested. Conclusions This study identified a TSC2 c.2742+5G>A variant as the genetic cause of a Han-Chinese family with TSC and first confirmed its pathogenicity. These findings expand the phenotypic and genetic spectrum of TSC and may contribute to its diagnosis and treatment, as well as a better understanding of the splicing mechanism.
Collapse
Affiliation(s)
- Kuan Fan
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yi Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lina Gong
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hao Deng
| |
Collapse
|
6
|
Huang Y, Yuan L, He G, Cao Y, Deng X, Deng H. Novel compound heterozygous variants in the USH2A gene associated with autosomal recessive retinitis pigmentosa without hearing loss. Front Cell Dev Biol 2023; 11:1129862. [PMID: 36875754 PMCID: PMC9974670 DOI: 10.3389/fcell.2023.1129862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Retinitis pigmentosa (RP) is a group of progressive inherited retinal dystrophies characterized by the primary degeneration of rod photoreceptors and the subsequent loss of cone photoreceptors because of cell death. It is caused by different mechanisms, including inflammation, apoptosis, necroptosis, pyroptosis, and autophagy. Variants in the usherin gene (USH2A) have been reported in autosomal recessive RP with or without hearing loss. In the present study, we aimed to identify causative variants in a Han-Chinese pedigree with autosomal recessive RP. Methods: A six-member, three-generation Han-Chinese family with autosomal recessive RP was recruited. A full clinical examination, whole exome sequencing, and Sanger sequencing, as well as co-segregation analysis were performed. Results: Three heterozygous variants in the USH2A gene, c.3304C>T (p.Q1102*), c.4745T>C (p.L1582P), and c.14740G>A (p.E4914K), were identified in the proband, which were inherited from parents and transmitted to the daughters. Bioinformatics analysis supported the pathogenicity of the c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P) variants. Conclusions: Novel compound heterozygous variants in the USH2A gene, c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P), were identified as the genetic causes of autosomal recessive RP. The findings may enhance the current knowledge of the pathogenesis of USH2A-associated phenotypes, expand the spectrum of the USH2A gene variants, and contribute to improved genetic counseling, prenatal diagnosis, and disease management.
Collapse
Affiliation(s)
- Yanxia Huang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Guiyun He
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yanna Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Miao SB, Guo H, Kong DX, Zhao YY, Pan SH, Jiang Y, Gao X, Wu XH. Case report: Analysis of novel compound heterozygous TPP1 variants in a Chinese patient with neuronal ceroid lipofuscinosis type 2. Front Genet 2022; 13:937485. [PMID: 36118858 PMCID: PMC9471087 DOI: 10.3389/fgene.2022.937485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal ceroid lipofuscinosis type 2 (CLN2) is an autosomal recessive neurodegenerative disease caused by variants in the TPP1 gene that lead to the deficiency of the lysosomal enzyme tripeptidyl peptidase I (TPP1) activity. Herein, we report a rare case of CLN2 caused by two novel variants of TPP1. The patient presented with seizures at onset, followed by progressive cognitive impairment, motor decline, and vision loss. Novel compound heterozygous variants, c.544_545del and c.230-3C>G, in TPP1 were identified by whole-exome sequencing. The variant assessment showed that the c.544_545del is a frameshift variant mediating mRNA decay and that c.230-3C>G is a splice variant generating aberrantly spliced TPP1 mRNA, as confirmed by a Splicing Reporter Minigene assay. In conclusion, clinical history, variant assessment, and molecular analyses demonstrate that the novel compound heterozygous variants are responsible for CLN2 disease in this patient. This study expands the mutation spectrum of TPP1.
Collapse
Affiliation(s)
- Sui-Bing Miao
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Institute of Reproductive Medicine of Shijiazhuang, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Hui Guo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - De-Xian Kong
- Department of Endocrinology, The Fourth Affiliated Hospital of Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - Yuan-Yuan Zhao
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Institute of Reproductive Medicine of Shijiazhuang, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Shu-Hong Pan
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Institute of Reproductive Medicine of Shijiazhuang, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Yan Jiang
- Center of Reproductive Medicine, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Xing Gao
- Center of Reproductive Medicine, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Xiao-Hua Wu
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Institute of Reproductive Medicine of Shijiazhuang, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiao-Hua Wu,
| |
Collapse
|