1
|
Xie F, Fu X, Li W, Bao Y, Chang F, Lu Y, Lu Y. Effects of sodium tanshinone IIA sulfonate injection on pro-inflammatory cytokines, adhesion molecules and chemokines in Chinese patients with atherosclerosis and atherosclerotic cardiovascular disease: a meta-analysis of randomized controlled trials. Front Cardiovasc Med 2025; 12:1511747. [PMID: 40017522 PMCID: PMC11865200 DOI: 10.3389/fcvm.2025.1511747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
Background Inflammation, as the basic pathogenic mechanism of atherosclerosis, promotes the development of atherosclerosis (AS) and atherosclerotic cardiovascular disease (ASCVD). In numerous experiments based on animal and cellular models, sodium tanshinone IIA sulfonate (STS) injection has been found to reduce the levels of pro-inflammatory cytokines, adhesion molecules, and chemokines in patients with AS and ASCVD, exerting an anti-inflammatory effect to treat the disease. Objectives This study aimed to perform a meta-analysis of randomized controlled trials (RCTs) to quantify the effects of STS on pro-inflammatory cytokines, adhesion molecules, and chemokines in patients with AS and ASCVD. Methods Eight literature databases were searched from inception to January 2024, including PubMed, Web of Science, Cochrane Library, Ebsco, CNKI, VIP, WanFang Data, and ClinicalTrails.gov. Two reviewers independently screened articles and extracted data. The quality of the included studies was assessed using the Cochrane Risk Assessment Tool 2.0. Meta-analysis was performed using RevMan 5.4 software. Results Of the 2,698 publications screened, 42 studies were included, and the related trials involved 4,654 Chinese patients. The meta-analysis showed that STS significantly reduced the concentration level of pro-inflammatory cytokines interleukin 6 (IL-6) [standardized mean difference (SMD)=-1.50, 95%CI(-2.06, -0.95), p < 0.00001], tumor necrosis factor-α (TNF-α) [SMD = -2.55, 95%CI(-3.24, -1.86), p < 0.00001], and interleukin-1β (IL-1β) [SMD = -1.21, 95%CI(-2.41, -0.01), p < 0.0001], of adhesion molecules intercellular adhesion molecule-1 (ICAM-1) [SMD = -1.28, 95%CI(-1.55, -1.02), p < 0.00001] and p-selectin [SMD = -1.06, 95%CI(-1.46, -0.67), p < 0.00001], and of chemokines fractalkine [SMD = -1.32, 95%CI(-2.02, -0.61), p = 0.0003] and monocyte chemoattractant protein-1 (MCP-1) [SMD = -0.83, 95%CI(-1.11, -0.55), p < 0.00001] among patients with AS and ASCVD. Conclusion The use of STS in patients with AS and ASCVD appeared to significantly decrease levels of pro-inflammatory cytokines, adhesion molecules, and chemokines.Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/], PROSPERO [CRD42024496960].
Collapse
Affiliation(s)
| | | | | | | | | | - Yun Lu
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuqiong Lu
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Zhang W, Xiong P, Liu J, Hu H, Song L, Liu X, Jia B. A systematic review and meta-analysis of Danshen combined with mesalazine for the treatment of ulcerative colitis. Front Pharmacol 2024; 15:1334474. [PMID: 38881869 PMCID: PMC11176616 DOI: 10.3389/fphar.2024.1334474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/22/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose: Current pharmacological treatments for Ulcerative Colitis (UC) have limitations. Therefore, it is important to elucidate any available alternative or complementary treatment, and Chinese herbal medicine shows the potential for such treatment. As a traditional Chinese herbal medicine, Danshen-related preparations have been reported to be beneficial for UC by improving coagulation function and inhibiting inflammatory responses. In spite of this, the credibility and safety of this practice are incomplete. Therefore, in order to investigate whether Danshen preparation (DSP) is effective and safe in the treatment of UC, we conducted a systematic review and meta-analysis. Methods: PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Wanfang Database and CQVIP Database were searched for this review.The main observation indexes were the effect of DSP combined with mesalazine or DSP on the effective rate, platelet count (PLT), mean platelet volume (MPV) and C-reactive protein (CRP) of UC. The Cochrane risk of bias tool was used to assess the risk of bias. The selected studies were evaluated for quality and data processing using RevMan5.4 and Stata17.0 software. Results: A total of 37 studies were included. Among them, 26 clinical trials with 2426 patients were included and 11 animal experimental studies involving 208 animals were included. Meta-analysis results showed that compared with mesalazine alone, combined use of DSP can clearly improve the clinical effective rate (RR 0.86%, 95% CI:0.83-0.88, p < 0.00001) of UC. Furthermore it improved blood coagulation function by decreasing serum PLT and increasing MPV levels, and controlled inflammatory responses by reducing serum CRP, TNF-α, IL-6, and IL-8 levels in patients. Conclusion: Combining DSP with mesalazine for UC can enhance clinical efficacy. However, caution should be exercised in interpreting the results of this review due to its flaws, such as allocation concealment and uncertainty resulting from the blinding of the study. Systematic Review Registration: http://www.crd.york.ac.uk/PROSPERO/myprospero.php, identifier PROSPERO: CRD42022293287.
Collapse
Affiliation(s)
- Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Peiyu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junyu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hengchang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinglong Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Huang J, Zhang J, Sun C, Yang R, Sheng M, Hu J, Kai G, Han B. Adjuvant role of Salvia miltiorrhiza bunge in cancer chemotherapy: A review of its bioactive components, health-promotion effect and mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117022. [PMID: 37572929 DOI: 10.1016/j.jep.2023.117022] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy is a common cancer treatment strategy. However, its effectiveness is constrained by toxicity and adverse effects. The Lamiaceae herb Salvia miltiorrhiza Bunge has a long history of therapeutic use in the treatment of blood stasis illnesses, which are believed by traditional Chinese medicine to be connected to cancer. AIM OF THE STUDY This review summarized the common toxicity of chemotherapy and the potential chemo-adjuvant effect and mechanisms of active ingredients from S. miltiorrhiza, hoping to provide valuable information for the development and application of S. miltiorrhiza resources. MATERIALS AND METHODS The literatures were retrieved from PubMed, Web of Science, Baidu Scholar and Google Scholar databases from 2002 to 2022. The inclusion criteria were studies reporting that S. miltiorrhiza or its constituents enhanced the efficiency of chemotherapy drugs or reduced the side effects. RESULTS Salvianolic acid A, salvianolic acid B, salvianolic acid C, rosmarinic acid, tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone I and miltirone are the primary adjuvant chemotherapy components of S. miltiorrhiza. The mechanisms mainly involve inhibiting proliferation, metastasis, and angiogenesis, inducing apoptosis, regulating autophagy and tumor microenvironment. In addition, they also improve chemotherapy drug-induced side effects. CONCLUSIONS The bioactive compounds of S. miltiorrhiza are shown to inhibit proliferation, metastasis, and angiogenesis, induce apoptosis and autophagy, regulate immunity and tumor microenvironment when combined with chemotherapy drugs. However, further clinical studies are required to validate the current studies.
Collapse
Affiliation(s)
- Jiayan Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Chengtao Sun
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ruiwen Yang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Miaomiao Sheng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Zhu G, Li D, Wang X, Guo Q, Zhao Y, Hou W, Li J, Zheng Q. Drug monomers from Salvia miltiorrhiza Bge. promoting tight junction protein expression for therapeutic effects on lung cancer. Sci Rep 2023; 13:22928. [PMID: 38129556 PMCID: PMC10739844 DOI: 10.1038/s41598-023-50163-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Salvia miltiorrhiza Bge. is a traditional Chinese medicine (TCM) that has been used for treatment of various diseases, including cancer by activating blood circulation and removing blood stasis. Tanshinone (TanIIA) and cryptotanshinone (CPT) are major lipophilic compounds extracted from the root of Salvia miltiorrhiza Bge., which are considered to be the effective compounds affecting the efficacy of the anti-tumor therapy of Salvia miltiorrhiza Bge. We have explored the mechanism of CPT and TanIIA exerting inhibition in non-small cell lung cancer (NSCLC) to provide experimental data support for guiding the translational development and clinical application of anti-tumor components of TCM. The subcutaneous tumor model and in vitro culture model of A549 cells was constructed to evaluate CPT and TanIIA's tumour-inhibitory effect respectively. RNA sequencing (RNA-seq) and bioinformatics analysis were conducted to identify differentially expressed genes (DEGs) and signalling pathways related to CPT and TanIIA treatment. qRT-PCR and Western blot were used to explore the mechanism of CPT and TanIIA intervention on NSCLC. Both CPT and TanIIA significantly inhibited the proliferation of A549 tumor cells and tumor growth in animal models. After intervention, the migration ability decreased and the level of apoptosis increased. RNA-seq results showed that both CPT and TanIIA could cause gene differential expression, miR-21-5p as one of the most significant gene expression differences between the two groups, and could act on cell connectivity. CPT and TanIIA play a regulatory role in regulating tight junction proteins (Occludin and ZO1), and Occludin mRNA and protein levels were reduced in an in vitro miR-21-5p overexpression A549 cell model. The mechanisms may be related to the reduction of miR-21-5p expression to increase the level of promoted tight junction protein expression for the purpose of inhibiting proliferation and invasion of NSCLC.
Collapse
Affiliation(s)
- Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Daorui Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueqian Wang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qiujun Guo
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuanchen Zhao
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wei Hou
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qi Zheng
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
5
|
Jia C, Zhang R, Wei L, Xie J, Zhou S, Yin W, Hua X, Xiao N, Ma M, Jiao H. Investigation of the mechanism of tanshinone IIA to improve cognitive function via synaptic plasticity in epileptic rats. PHARMACEUTICAL BIOLOGY 2023; 61:100-110. [PMID: 36548216 PMCID: PMC9788714 DOI: 10.1080/13880209.2022.2157843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 06/04/2023]
Abstract
CONTEXT Tanshinone IIA is an extract of Salvia miltiorrhiza Bunge (Labiatae) used to treat cardiovascular disorders. It shows potential anticonvulsant and cognition-protective properties. OBJECTIVE We investigated the mechanism of tanshinone IIA on antiepileptic and cognition-protective effects in the model of epileptic rats. MATERIALS AND METHODS Lithium chloride (LiCl)-pilocarpine-induced epileptic Wistar rats were randomly assigned to the following groups (n = 12): control (blank), model, sodium valproate (VPA, 189 mg/kg/d, positive control), tanshinone IIA low dose (TS IIA-L, 10 mg/kg/d), medium dose (TS IIA-M, 20 mg/kg/d) and high dose (TS IIA-H, 30 mg/kg/d). Then, epileptic behavioural observations, Morris water maze test, Timm staining, transmission electron microscopy, immunofluorescence staining, western blotting and RT-qPCR were measured. RESULTS Compared with the model group, tanshinone IIA reduced the frequency and severity of seizures, improved cognitive impairment, and inhibited hippocampal mossy fibre sprouting score (TS IIA-M 1.50 ± 0.22, TS IIA-H 1.17 ± 0.31 vs. model 2.83 ± 0.31), as well as improved the ultrastructural disorder. Tanshinone IIA increased levels of synapse-associated proteins synaptophysin (SYN) and postsynaptic dense substance 95 (PSD-95) (SYN: TS IIA 28.82 ± 2.51, 33.18 ± 2.89, 37.29 ± 1.69 vs. model 20.23 ± 3.96; PSD-95: TS IIA 23.10 ± 0.91, 26.82 ± 1.41, 27.00 ± 0.80 vs. model 18.28 ± 1.01). DISCUSSION AND CONCLUSIONS Tanshinone IIA shows antiepileptic and cognitive function-improving effects, primarily via regulating synaptic plasticity. This research generates a theoretical foundation for future research on potential clinical applications for tanshinone IIA.
Collapse
Affiliation(s)
- Chen Jia
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Zhang
- Department of Pharmacy, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Liming Wei
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suqin Zhou
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xi Hua
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Nan Xiao
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Meile Ma
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haisheng Jiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
6
|
Schaf J, Shinhmar S, Zeng Q, Pardo OE, Beesley P, Syed N, Williams RSB. Enhanced Sestrin expression through Tanshinone 2A treatment improves PI3K-dependent inhibition of glioma growth. Cell Death Discov 2023; 9:172. [PMID: 37202382 DOI: 10.1038/s41420-023-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Glioblastomas are a highly aggressive cancer type which respond poorly to current pharmaceutical treatments, thus novel therapeutic approaches need to be investigated. One such approach involves the use of the bioactive natural product Tanshinone IIA (T2A) derived from the Chinese herb Danshen, where mechanistic insight for this anti-cancer agent is needed to validate its use. Here, we employ a tractable model system, Dictyostelium discoideum, to provide this insight. T2A potently inhibits cellular proliferation of Dictyostelium, suggesting molecular targets in this model. We show that T2A rapidly reduces phosphoinositide 3 kinase (PI3K) and protein kinase B (PKB) activity, but surprisingly, the downstream complex mechanistic target of rapamycin complex 1 (mTORC1) is only inhibited following chronic treatment. Investigating regulators of mTORC1, including PKB, tuberous sclerosis complex (TSC), and AMP-activated protein kinase (AMPK), suggests these enzymes were not responsible for this effect, implicating an additional molecular mechanism of T2A. We identify this mechanism as the increased expression of sestrin, a negative regulator of mTORC1. We further show that combinatory treatment using a PI3K inhibitor and T2A gives rise to a synergistic inhibition of cell proliferation. We then translate our findings to human and mouse-derived glioblastoma cell lines, where both a PI3K inhibitor (Paxalisib) and T2A reduces glioblastoma proliferation in monolayer cultures and in spheroid expansion, with combinatory treatment significantly enhancing this effect. Thus, we propose a new approach for cancer treatment, including glioblastomas, through combinatory treatment with PI3K inhibitors and T2A.
Collapse
Affiliation(s)
- Judith Schaf
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Sonia Shinhmar
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Qingyu Zeng
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Philip Beesley
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
7
|
Wu S, Zhao K, Wang J, Liu N, Nie K, Qi L, Xia L. Recent advances of tanshinone in regulating autophagy for medicinal research. Front Pharmacol 2023; 13:1059360. [PMID: 36712689 PMCID: PMC9877309 DOI: 10.3389/fphar.2022.1059360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Initially described as an ancient and highly conserved catabolic biofunction, autophagy plays a significant role in disease pathogenesis and progression. As the bioactive ingredient of Salvia miltiorrhiza, tanshinone has recently shown profound effects in alleviating and treating various diseases by regulating autophagy. However, compared to the remarkable achievements in the known pharmacological effects of this traditional Chinese medicine, there is a lack of a concise and comprehensive review deciphering the mechanism by which tanshinone regulates autophagy for medicinal research. In this context, we concisely review the advances of tanshinone in regulating autophagy for medicinal research, including human cancer, the nervous system, and cardiovascular diseases. The pharmacological effects of tanshinone targeting autophagy involve the regulation of autophagy-related proteins, such as Beclin-1, LC3-II, P62, ULK1, Bax, ATG3, ATG5, ATG7, ATG9, and ATG12; the regulation of the PI3K/Akt/mTOR, MEK/ERK/mTOR, Beclin-1-related, and AMPK-related signaling pathways; the accumulation of reactive oxygen species (ROS); and the activation of AMPK. Notably, we found that tanshinone played a dual role in human cancers in an autophagic manner, which may provide a new avenue for potential clinical application. In brief, these findings on autophagic tanshinone and its derivatives provide a new clue for expediting medicinal research related to tanshinone compounds and autophagy.
Collapse
Affiliation(s)
- Sha Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kui Zhao
- College of Materials Science and Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Jie Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nannan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaidi Nie
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Li Y, Jin D, Fan Y, Zhang K, Yang T, Zou C, Yin A. Preparation and performance of random- and oriented-fiber membranes with core-shell structures via coaxial electrospinning. Front Bioeng Biotechnol 2023; 10:1114034. [PMID: 36698642 PMCID: PMC9868300 DOI: 10.3389/fbioe.2022.1114034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
The cells and tissue in the human body are orderly and directionally arranged, and constructing an ideal biomimetic extracellular matrix is still a major problem to be solved in tissue engineering. In the field of the bioresorbable vascular grafts, the long-term functional prognosis requires that cells first migrate and grow along the physiological arrangement direction of the vessel itself. Moreover, the graft is required to promote the formation of neointima and the development of the vessel walls while ensuring that the whole repair process does not form a thrombus. In this study, poly (l-lactide-co-ε-caprolactone) (PLCL) shell layers and polyethylene oxide (PEO) core layers with different microstructures and loaded with sodium tanshinone IIA sulfonate (STS) were prepared by coaxial electrospinning. The mechanical properties proved that the fiber membranes had good mechanical support, higher than that of the human aorta, as well as great suture retention strengths. The hydrophilicity of the oriented-fiber membranes was greatly improved compared with that of the random-fiber membranes. Furthermore, we investigated the biocompatibility and hemocompatibility of different functional fiber membranes, and the results showed that the oriented-fiber membranes containing sodium tanshinone IIA sulfonate had an excellent antiplatelet adhesion effect compared to other fiber membranes. Cytological analysis confirmed that the functional fiber membranes were non-cytotoxic and had significant cell proliferation capacities. The oriented-fiber membranes induced cell growth along the orientation direction. Degradation tests showed that the pH variation range had little change, the material mass was gradually reduced, and the fiber morphology was slowly destroyed. Thus, results indicated the degradation rate of the oriented-fiber graft likely is suitable for the process of new tissue regeneration, while the random-fiber graft with a low degradation rate may cause the material to reside in the tissue for too long, which would impede new tissue reconstitution. In summary, the oriented-functional-fiber membranes possessing core-shell structures with sodium tanshinone IIA sulfonate/polyethylene oxide loading could be used as tissue engineering materials for applications such as vascular grafts with good prospects, and their clinical application potential will be further explored in future research.
Collapse
Affiliation(s)
- Yunhuan Li
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China,Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Dalai Jin
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yongyong Fan
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China,Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Kuihua Zhang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Tao Yang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Chengyu Zou
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Anlin Yin
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China,*Correspondence: Anlin Yin,
| |
Collapse
|