1
|
Yan J, Ai C, Chen Q, Wang Q, Zhu Y, Li M, Chen K, He M, Shen M, Chen L, Zhang R, Zheng C, Liao W, Bin J, Lin H, Ma S, Tan N, Liao Y. CircMap4k2 reactivated by aneurysm plication alleviates residual cardiac remodeling after SVR by enhancing cardiomyocyte proliferation in post-MI mice. J Adv Res 2024; 65:227-238. [PMID: 38043608 PMCID: PMC11518968 DOI: 10.1016/j.jare.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
INTRODUCTION Surgical ventricular reconstruction (SVR) is an alternative therapeutic approach in patients with refractory heart failure (HF), but residual remodeling after SVR limits the improvement of HF. Recently, we reported that SVR may act as an environmental cue to reactivate endogenous proliferation of cardiomyocytes; however, it is unclear whether enhancing endogenous cardiomyocyte regeneration further improves HF after SVR. OBJECTIVES We aimed to explore whether circular RNAs (circRNAs) would involved in SVR and their mechanisms. METHODS Male C57BL/6 mice were subjected to myocardial infarction (MI) or sham surgery. Four weeks later, MI mice with a large ventricular aneurysm underwent SVR or a second open-chest operation only. Echocardiography and histological analysis were used to evaluate heart function, cardiac remodeling, and myocardial regeneration. Sequencing of circular RNAs, RNA immunoprecipitation, RNA pulldown, and luciferase reporter assay were used to explore the underlying mechanisms. RESULTS SVR markedly attenuated cardiac remodeling and induced cardiomyocyte regeneration, as evidenced by positive staining of Ki-67, phospho-histone H3 (pH3), and Aurora B in the plication zone, but significant residual remodeling still existed in comparison with the sham group. Sequencing results showed that SVR altered the expression profile of cardiac circRNAs, and circMap4k2 was identified as the most upregulated one. After characterizing circMap4k2, we noted that overexpression of circMap4k2 significantly promoted proliferation of cardiomyocytes in cultured neonatal rat cardiomyocytes and silencing of circMap4k2 significantly inhibited it; similar results were obtained in SVR-treated MI mice but not in MI mice without SVR treatment. Residual cardiac remodeling after SVR was further attenuated by circMap4k2 overexpression. CircMap4k2 bound with miR-106a-3p and inhibited cardiomyocyte proliferation by targeting a downstream effector of the antizyme inhibitor 1 (Azin1) gene. CONCLUSIONS CircMap4k2 acts as an environmental cue and targets the miR-106a-3p/Azin1 pathway to increase cardiac regeneration in the plication zone and attenuate residual remodeling after SVR.
Collapse
Affiliation(s)
- Junyu Yan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenzhi Ai
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuhan Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingyuan He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China; Cardiovascular Center, the Affiliated Sixth Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
Chen L, Li M, Shen M, Zhu Y, Chen K, Huang X, Zheng C, Wang Q, Lin H, Liao W, Bin J, Ma S, Liao Y. Bioinformatics exploration of potential common therapeutic targets for systemic and pulmonary arterial hypertension-induced myocardial hypertrophy. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37232575 DOI: 10.3724/abbs.2023071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Systemic and pulmonary arterial hypertension (PAH) can induce left and right ventricular hypertrophy, respectively, but common therapeutic targets for both left and right hypertrophy are limited. In this study, we attempt to explore potential common therapeutic targets and screen out potential target drugs for further study. Cardiac mRNA expression profiles in mice with transverse aortic constriction (TAC) and pulmonary arterial constriction (PAC) are obtained from online databases. After bioinformatics analyses, we generate TAC and PAC mouse models to validate the phenotypes of cardiac remodelling as well as the identified hub genes. Bioinformatics analyses show that there are 214 independent differentially expressed genes (DEGs) in GSE136308 (TAC related) and 2607 independent DEGs in GSE30922 (PAC related), while 547 shared DEGs are associated with the function of the extracellular matrix (ECM) or involved in the PI3K-Akt signaling pathway, cytokine-cytokine receptor interactions, and ECM-receptor interactions. We identifyd Fn1, Il6, Col1a1, Igf1, Col1a2, Timp1, Col3a1, Cd44, Ctgf and Postn as hub genes of the shared DEGs, and most of them are associated with myocardial fibrosis. Those hub genes and phenotypes of cardiac remodelling are validated in our TAC and PAC mouse models. Furthermore, we identify dehydroisoandrosterone (DHEA), iloprost and 4,5-dianilinophthalimide (DAPH) as potential therapeutic drugs targeting both left and right ventricular hypertrophy and validate the effect of DHEA. These findings suggest that DHEA could be an effective drug for pressure overload-induced left or right ventricular hypertrophy by regulating the shared hub differentially expressed genes associated with fibrosis.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxia Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Ma S, Chen L, Yan J, Shen M, Zhang R, Li M, He M, Chen K, Zhu Y, Lin H, Wang Y, Liao W, Bin J, Zheng C, Liao Y. Dapagliflozin attenuates residual cardiac remodeling after surgical ventricular reconstruction in mice with an enlarged heart after myocardial infarction. Biomed Pharmacother 2022; 156:113765. [PMID: 36228368 DOI: 10.1016/j.biopha.2022.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Severe heart failure refractory to conventional therapy requires alternative treatment modalities. Surgical ventricular reconstruction (SVR) has been used to reverse cardiac remodeling in post-myocardial infarction (MI) patients with large left ventricular (LV) aneurysm, however, residual LV remodeling and dysfunction remain postoperatively. It is unclear whether SVR recovers response to drug treatment and whether the sodium-glucose co-transporter 2 inhibitor dapagliflozin (DAPA) reverses residual LV remodeling after SVR. METHODS Adult male C57 mice were subjected to MI or sham surgery. Four-week later, MI mice with LV aneurysm underwent modified SVR or second open-chest sham operation and were randomized to DAPA or vehicle for four-week. Cardiac remodeling, LV function, and the underlying mechanisms were evaluated by echocardiography, invasive LV hemodynamic measurements, mRNA sequencing, and bioinformatics analysis. RESULTS SVR significantly decreased LV volume; increased myocardial strain, LV pressure change rates and end-systolic elastance; and decreased heart-to-body weight ratio and myocardial fibrosis. However, significant residual cardiac remodeling remained. DAPA significantly attenuated residual cardiac remodeling and improved LV function in SVR mice but did not have curative effects in non-SVR mice. Of the 1532 genes differentially expressed in SVR and MI mice, 1037 were associated with cardiac metabolism; Src, Crebbp, Fn1, Grb2, and Mapk14 were the top 5 hub genes. Unlike sham surgery, MI upregulated those 5 genes, and treatment with SVR + DAPA normalized their expression. CONCLUSIONS SVR restores therapeutic response in the post-MI heart with large LV aneurysm, and DAPA attenuates residual cardiac remodeling after SVR by normalizing some cardiac metabolism-related hub genes.
Collapse
Affiliation(s)
- Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junyu Yan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rui Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mingyuan He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuegang Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
4
|
Liao R, Li Z, Wang Q, Lin H, Sun H. Revascularization of chronic total occlusion coronary artery and cardiac regeneration. Front Cardiovasc Med 2022; 9:940808. [PMID: 36093131 PMCID: PMC9455703 DOI: 10.3389/fcvm.2022.940808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary chronic total occlusion (CTO) contributes to the progression of heart failure in patients with ischemic cardiomyopathy. Randomized controlled trials demonstrated that percutaneous coronary intervention (PCI) for CTO significantly improves angina symptoms and quality of life but fails to reduce clinical events compared with optimal medical therapy. Even so, intervening physicians strongly support CTO-PCI. Cardiac regeneration therapy after CTO-PCI should be a promising approach to improving the prognosis of ischemic cardiomyopathy. However, the relationship between CTO revascularization and cardiac regeneration has rarely been studied, and experimental studies on cardiac regeneration usually employ rodent models with permanent ligation of the coronary artery rather than reopening of the occlusive artery. Limited early-stage clinical trials demonstrated that cell therapy for cardiac regeneration in ischemic cardiomyopathy reduces scar size, reverses cardiac remodeling, and promotes angiogenesis. This review focuses on the status quo of CTO-PCI in ischemic cardiomyopathy and the clinical prospect of cardiac regeneration in this setting.
Collapse
Affiliation(s)
- Ruoxi Liao
- Department of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Zhihong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiancheng Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hairuo Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hairuo Lin, ,
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Huijun Sun,
| |
Collapse
|