1
|
Dhahbi W, Briki W, Heissel A, Schega L, Dergaa I, Guelmami N, Omri AE, Chaabene H. Physical Activity to Counter Age-Related Cognitive Decline: Benefits of Aerobic, Resistance, and Combined Training-A Narrative Review. SPORTS MEDICINE - OPEN 2025; 11:56. [PMID: 40381170 DOI: 10.1186/s40798-025-00857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/22/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND With the increase in life expectancy, age-related cognitive decline has become a prevalent concern. Physical activity (PA) is increasingly being recognized as a vital non-pharmacological strategy to counteract this decline. This review aimed to (i) critically evaluate and synthesize the impact of different PA and exercise modalities (aerobic, resistance, and concurrent training) on cognitive health and overall well-being in older adults, (ii) discuss the influence of exercise intensity on cognitive functions, and (iii) elucidate the potential mechanisms through which PA and exercise may enhance or mitigate cognitive performance among older adults. MAIN BODY An exhaustive analysis of peer-reviewed studies pertaining to PA/exercise and cognitive health in older adults from January 1970 to February 2025 was conducted using PubMed, Scopus, Web of Science, PsycINFO, and MEDLINE. There is compelling evidence that aerobic and resistance training (RT) improve cognitive function and mental health in older adults, with benefits influenced by the type and intensity of exercise. Specifically, moderate-intensity aerobic exercise appears to bolster memory, executive functions, and mood regulation, potentially through increased cerebral blood flow, neurogenesis, and production of brain-derived neurotrophic factors in the hippocampus. Moderate-to-high-intensity RT acutely enhances visuospatial processing and executive functions, with chronic training promoting neurogenesis, possibly by stimulating insulin-like growth factor-1 and augmenting blood flow to the prefrontal cortex. Findings related to the effects of concurrent training on cognitive function and mental health are heterogeneous, with some studies reporting no significant impact and others revealing substantial improvements. However, emerging evidence indicates that the combination of concurrent training and cognitive tasks (i.e., dual tasks) is particularly effective, often outperforming aerobic exercise alone. CONCLUSIONS Regular aerobic and RT performance is beneficial for older adults to mitigate cognitive decline and enhance their overall well-being. Specifically, engaging in moderate-intensity aerobic exercises and moderate-to-high-intensity RT is safe and effective in improving cognitive function and mental health in this demographic. These exercises, which can be conveniently incorporated into daily routines, effectively enhance mental agility, memory, executive function, and mood. The findings related to concurrent training are mixed, with emerging evidence indicating the effectiveness of combined concurrent and cognitive tasks on cognitive health and well-being in older adults. Key Points - Moderate-intensity aerobic exercise is associated with significant improvements in cognitive function, mood regulation, and overall well-being in older adults. These benefits are linked to structural and functional changes in the brain such as increased hippocampal volume and elevated levels of brain-derived neurotrophic factor. - Moderate-to-high-intensity resistance training, both in acute and chronic forms, enhances cognitive performance in older adults, particularly in executive functions and visuospatial processing. Cognitive benefits, including improvements in information-processing speed, attention, and memory, can be sustained through regular training. - The effects of concurrent resistance and aerobic training on cognitive function in older adults are mixed. However, combining concurrent training with cognitive tasks (i.e., dual-task training) is particularly effective and often outperforms aerobic exercise alone. - Cognitive and well-being improvements from aerobic and resistance training are mediated by mechanisms such as increased cerebral blood flow and oxygen delivery, enhanced neurogenesis, reduced oxidative stress and inflammation, and positive hormonal changes. - While the optimal exercise dosage for promoting cognitive health in older adults remains undetermined, empirical evidence indicates a positive correlation between increased exercise dosage and cognitive health improvements.
Collapse
Affiliation(s)
- Wissem Dhahbi
- Research Unit "Sport Sciences, Health and Movement", High Institute of Sports and Physical Education of Kef, University of Jendouba, Kef, Tunisia
- Qatar Police Academy, Police College, Training Department, Doha, Qatar
| | - Walid Briki
- Centre Hospitalier de Grasse, Grasse, France
| | - Andreas Heissel
- Social and Preventive Medicine, Department of Sports and Health Sciences, Intra Faculty Unit "Cognitive Sciences", Faculty of Human Science and Faculty of Health Sciences Brandenburg, Research Area Services Research and e-Health, Potsdam, Brandenburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ismail Dergaa
- High Institute of Sport and Physical Education of Ksar Said, University of Manouba, Manouba 2010, Tunisia
| | - Noomen Guelmami
- Research Unit Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis, Tunisia
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Department of Human and Social Sciences, High Institute of Sport and Physical Education of Kef, University of Jendouba, 7100, Kef, Tunisia
| | - Abdelfatteh El Omri
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Helmi Chaabene
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- Université de Jendouba, Institut Supérieur de Sport et de l'Education Physique du Kef, 7100, Le Kef, Tunisia.
| |
Collapse
|
2
|
Chen H, Peng C, Fang F, Li Y, Liu X, Hu Y, Wang G, Liu X, Shen Y. Angiogenesis within atherosclerotic plaques: Mechanical regulation, molecular mechanism and clinical diagnosis. MECHANOBIOLOGY IN MEDICINE 2025; 3:100114. [PMID: 40396135 PMCID: PMC12082165 DOI: 10.1016/j.mbm.2025.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 01/05/2025] [Indexed: 05/22/2025]
Abstract
Atherosclerosis (AS) is a disease characterized by focal cholesterol accumulation and insoluble inflammation in arterial intima, leading to the formation of an atherosclerotic plaque consisting of lipids, cells, and fibrous matrix. The presence of plaque can restrict or obstruct blood flow, resulting in arterial stenosis and local mechanical microenvironment changes including flow shear stress, vascular matrix stiffness, and plaque structural stress. Neovascularization within the atherosclerotic plaque plays a crucial role in both plaque growth and destabilization, potentially leading to plaque rupture and fatal embolism. However, the exact interactions between neovessels and plaque remain unclear. In this review, we provide a comprehensive analysis of the origin of intraplaque neovessels, the contributing factors, underlying molecular mechanisms, and associated signaling pathways. We specifically emphasize the role of mechanical factors contributing to angiogenesis in atherosclerotic plaques. Additionally, we summarize the imaging techniques and therapeutic strategies for intraplaque neovessels to enhance our understanding of this field.
Collapse
Affiliation(s)
- Hanxiao Chen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chengxiu Peng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaran Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ying Hu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guixue Wang
- Jinfeng Laboratory, Chongqing 401329, China
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
3
|
Ajongbolo AO, Langhans SA. YAP/TAZ-associated cell signaling - at the crossroads of cancer and neurodevelopmental disorders. Front Cell Dev Biol 2025; 13:1522705. [PMID: 39936032 PMCID: PMC11810912 DOI: 10.3389/fcell.2025.1522705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
YAP/TAZ (Yes-associated protein/paralog transcriptional co-activator with PDZ-binding domain) are transcriptional cofactors that are the key and major downstream effectors of the Hippo signaling pathway. Both are known to play a crucial role in defining cellular outcomes, including cell differentiation, cell proliferation, and apoptosis. Aside from the canonical Hippo signaling cascade with the key components MST1/2 (mammalian STE20-like kinase 1/2), SAV1 (Salvador homologue 1), MOB1A/B (Mps one binder kinase activator 1A/B) and LATS1/2 (large tumor suppressor kinase 1/2) upstream of YAP/TAZ, YAP/TAZ activation is also influenced by numerous other signaling pathways. Such non-canonical regulation of YAP/TAZ includes well-known growth factor signaling pathways such as the epidermal growth factor receptor (EGFR)/ErbB family, Notch, and Wnt signaling as well as cell-cell adhesion, cell-matrix interactions and mechanical cues from a cell's microenvironment. This puts YAP/TAZ at the center of a complex signaling network capable of regulating developmental processes and tissue regeneration. On the other hand, dysregulation of YAP/TAZ signaling has been implicated in numerous diseases including various cancers and neurodevelopmental disorders. Indeed, in recent years, parallels between cancer development and neurodevelopmental disorders have become apparent with YAP/TAZ signaling being one of these pathways. This review discusses the role of YAP/TAZ in brain development, cancer and neurodevelopmental disorders with a special focus on the interconnection in the role of YAP/TAZ in these different conditions.
Collapse
Affiliation(s)
- Aderonke O. Ajongbolo
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
- Biological Sciences Graduate Program, University of Delaware, Newark, DE, United States
| | - Sigrid A. Langhans
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
| |
Collapse
|
4
|
Hansen CE, Hollaus D, Kamermans A, de Vries HE. Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease. J Neuroinflammation 2024; 21:325. [PMID: 39696463 PMCID: PMC11657007 DOI: 10.1186/s12974-024-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF). These altered forces lead to increased vascular permeability, reduced endothelial reactivity to vasoactive mediators, and promote leukocyte transmigration. Whereas the molecular players involved in leukocyte infiltration have been described in detail, the importance of mechanical signalling throughout this process has only recently been recognized. Here, we review relevant features of mechanical forces acting on the BBB under healthy and pathological conditions, as well as the endothelial mechanosensory elements detecting and responding to altered forces. We demonstrate the underlying complexity by focussing on the family of transient receptor potential (TRP) ion channels. A better understanding of these processes will provide insights into the pathogenesis of several neurological disorders and new potential leads for treatment.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Ou X, Xiao C, Jiang J, Liu X, Liu L, Lu Y, Zhang W, He Y, Zhao Z. Interplay analysis of lead exposure with key cardiovascular gene polymorphisms on blood pressure in a cross-sectional study of occupational workers. Sci Rep 2024; 14:28936. [PMID: 39578479 PMCID: PMC11584784 DOI: 10.1038/s41598-024-77194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
An increasing number of studies have shown that lead is an important cardiovascular risk factor, but the impact of cardiovascular related gene polymorphisms on lead induced cardiovascular diseases is still unclear. To assess the interaction of lead exposure and related key cardiovascular regulating gene polymorphisms on blood pressure traits, three single-nucleotide polymorphisms including NOTCH1 rs3124591, Cerebral cavernous malformations 3 (CCM3) rs3804610 and Vascular endothelial growth factor receptor type 2 (VEGFR2) rs2305948 were selected and genotyped using improved multiplex ligase detection reaction method in 568 lead exposure workers in South China. General characteristics, blood lead and biochemical parameters including glucose, lipid profile and creatinine were also collected according to standard protocols. Regression analysis was used to evaluate the association of blood pressure with lead exposure, polymorphisms and their interaction. This study displayed that CCM3 rs3804610 had a positive interaction with lead and VEGFR2 rs2305948 had a negative interaction with lead. Specifcally, compared with the wild-type population, the blood lead of the genotype population carrying the risk allele increased by 1 µg/dL, systolic blood pressure increased by 0.53 mmHg (p < 0.01) and diastolic blood pressure increased by 0.34 mmHg (p < 0.05) for CCM3 rs3804610, and systolic blood pressure decreased by 0.28 mmHg (p < 0.05) and diastolic blood pressure decreased by 0.22 mmHg (p < 0.05) for VEGFR2 rs2305948. Thus our findings showed that the interaction between CCM3 rs3804610 and VEGFR2 rs2305948 and lead exposure were associated with blood pressure and may provide guidance for future research on hypertension prevention and personalized clinical treatment in lead exposed populations.
Collapse
Affiliation(s)
- Xiaoyan Ou
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Chen Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Immunization Planning Institute, Zhongshan Center for Disease Control and Prevention, Zhongshan, China
| | - Jun Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- School of Public Health and Healthcare Management, Anhui Medical College, Hefei, China
| | - Xinxia Liu
- Zhongshan Third People's Hospital, Guangdong, Zhongshan, China
| | - Lili Liu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yao Lu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Academic Department, Southern Medical University, Guangzhou, Guangdong, China
| | - Weipeng Zhang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yun He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhiqiang Zhao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
7
|
Reang J, Sharma V, Yadav V, Tonk RK, Majeed J, Sharma A, Sharma PC. Redefining the significance of quinoline containing compounds as potent VEGFR-2 inhibitors for cancer therapy. Med Chem Res 2024; 33:1079-1099. [DOI: 10.1007/s00044-024-03252-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 01/03/2025]
|
8
|
Tan J, Wang H, Liu S, Li L, Liu H, Liu T, Chen J. Multifunctional nanocoatings with synergistic controlled release of zinc ions and cytokines for precise modulation of vascular intimal reconstruction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102739. [PMID: 38341009 DOI: 10.1016/j.nano.2024.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Vascular stent implantation remains the major therapeutic method for cardiovascular diseases currently. We here introduced crucial biological functional biological function factors (SDF-1α, VEGF) and vital metal ions (Zn2+) into the stent surface to explore their synergistic effect in the microenvironment. The combination of the different factors is known to effectively regulate cellular inflammatory response and selectively regulate cell biological behavior. Meanwhile, in the implemented method, VEGF and Zn2+ were loaded into heparin and poly-l-lysine (Hep-PLL) nanoparticles, ensuring a controlled release of functional molecules with a multi-factor synergistic effect and excellent biological functions in vitro and in vivo. Notably, after 150 days of implantation of the modified stent in rabbits, a thin and smooth new intima was obtained. This study offers a new idea for constructing a modified surface microenvironment and promoting tissue repair.
Collapse
Affiliation(s)
- Jianying Tan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Huanran Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Hengquan Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Tao Liu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
9
|
Cheng L, Shi H, Du L, Liu Q, Yue H, Zhang H, Liu X, Xie J, Shen Y. Hemodynamic force dictates endothelial angiogenesis through MIEN1-ERK/MAPK-signaling axis. J Cell Physiol 2024; 239:e31177. [PMID: 38214132 DOI: 10.1002/jcp.31177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
It is well-recognized that blood flow at branches and bends of arteries generates disturbed shear stress, which plays a crucial in driving atherosclerosis. Flow-generated fluid shear stress (FSS), as one of the key hemodynamic factors, is appreciated for its critical involvement in regulating angiogenesis to facilitate wound healing and tissue repair. Endothelial cells can directly sense FSS but the mechanobiological mechanism by which they decode different patterns of FSS to trigger angiogenesis remains unclear. In the current study, laminar shear stress (LSS, 15 dyn/cm2) was employed to mimic physiological blood flow, while disturbed shear stress (DSS, ranging from 0.5 ± 4 dyn/cm2) was applied to simulate pathological conditions. The aim was to investigate how these distinct types of blood flow regulated endothelial angiogenesis. Initially, we observed that DSS impaired angiogenesis and downregulated endogenous vascular endothelial growth factor B (VEGFB) expression compared to LSS. We further found that the changes in membrane protein, migration and invasion enhancer 1 (MIEN1) play a role in regulating ERK/MAPK signaling, thereby contributing to endothelial angiogenesis in response to FSS. We also showed the involvement of MIEN1-directed cytoskeleton organization. These findings suggest the significance of shear stress in endothelial angiogenesis, thereby enhancing our understanding of the alterations in angiogenesis that occur during the transition from physiological to pathological blood flow.
Collapse
Affiliation(s)
- Lin Cheng
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Huiyu Shi
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Lingyu Du
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Qiao Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hongyan Yue
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Huaiyi Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Shen
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
10
|
Johnson BM, Johnson AM, Heim M, Buckley M, Mortimer B, Berry JL, Sewell-Loftin MK. Biomechanical stimulation promotes blood vessel growth despite VEGFR-2 inhibition. BMC Biol 2023; 21:290. [PMID: 38072992 PMCID: PMC10712065 DOI: 10.1186/s12915-023-01792-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Angiogenesis, or the growth of new vasculature from existing blood vessels, is widely considered a primary hallmark of cancer progression. When a tumor is small, diffusion is sufficient to receive essential nutrients; however, as the tumor grows, a vascular supply is needed to deliver oxygen and nutrients into the increasing mass. Several anti-angiogenic cancer therapies target VEGF and the receptor VEGFR-2, which are major promoters of blood vessel development. Unfortunately, many of these cancer treatments fail to completely stop angiogenesis in the tumor microenvironment (TME). Since these therapies focus on the biochemical activation of VEGFR-2 via VEGF ligand binding, we propose that mechanical cues, particularly those found in the TME, may be a source of VEGFR-2 activation that promotes growth of blood vessel networks even in the presence of VEGF and VEGFR-2 inhibitors. RESULTS In this paper, we analyzed phosphorylation patterns of VEGFR-2, particularly at Y1054/Y1059 and Y1214, stimulated via either VEGF or biomechanical stimulation in the form of tensile strains. Our results show prolonged and enhanced activation at both Y1054/Y1059 and Y1214 residues when endothelial cells were stimulated with strain, VEGF, or a combination of both. We also analyzed Src expression, which is downstream of VEGFR-2 and can be activated through strain or the presence of VEGF. Finally, we used fibrin gels and microfluidic devices as 3D microtissue models to simulate the TME. We determined that regions of mechanical strain promoted increased vessel growth, even with VEGFR-2 inhibition through SU5416. CONCLUSIONS Overall, understanding both the effects that biomechanical and biochemical stimuli have on VEGFR-2 activation and angiogenesis is an important factor in developing effective anti-angiogenic therapies. This paper shows that VEGFR-2 can be mechanically activated through strain, which likely contributes to increased angiogenesis in the TME. These proof-of-concept studies show that small molecular inhibitors of VEGFR-2 do not fully prevent angiogenesis in 3D TME models when mechanical strains are introduced.
Collapse
Affiliation(s)
- Bronte Miller Johnson
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA
| | - Allison McKenzie Johnson
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA
| | - Michael Heim
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA
| | - Molly Buckley
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA
| | - Bryan Mortimer
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Joel L Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
11
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Yang J, Gong Z, Dong J, Li H, Wang B, Du K, Zhang C, Chen L. Transcriptomics Provides Novel Insights into the Regulatory Mechanism of IncRNA HIF1 A-AS1 on Vascular Smooth Muscle Cells. Braz J Cardiovasc Surg 2023; 38:e20220260. [PMID: 37801489 PMCID: PMC10550220 DOI: 10.21470/1678-9741-2022-0260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/26/2022] [Indexed: 10/08/2023] Open
Abstract
INTRODUCTION Thoracic aortic aneurysm is a potentially fatal disease with a strong genetic contribution. The dysfunction of vascular smooth muscle cells (VSMCs) contributes to the formation of this aneurysm. Although previous studies suggested that long non-coding ribonucleic acid (RNA) hypoxia inducible factor 1 α-antisense RNA 1 (HIF1A-AS1) exerted a vital role in the progression and pathogenesis of thoracic aortic aneurysm, we managed to find a new regulatory mechanism of HIF1A-AS1 in VSMCs via transcriptomics. METHODS Cell viability was detected by the cell counting kit-8 assay. Cell apoptosis was assessed by Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Transwell migration assay and wound healing assay were performed to check the migration ability of HIF1A-AS1 on VSMCs. The NextSeq XTen system (Illumina) was used to collect RNA sequencing data. Lastly, reverse transcription-quantitative polymerase chain reaction confirmed the veracity and reliability of RNA-sequencing results. RESULTS We observed that overexpressing HIF1A-AS1 successfully promoted apoptosis, significantly altered cell cycle distribution, and greatly attenuated migration in VSMCs, further highlighting the robust promoting effects of HIF1A-AS1 to thoracic aortic aneurysm. Moreover, transcriptomics was implemented to uncover its underlying mechanism. A total of 175 differently expressed genes were identified, with some of them enriched in apoptosis, migration, and cell cycle-related pathways. Intriguingly, some differently expressed genes were noted in vascular development or coagulation function pathways. CONCLUSION We suggest that HIF1A-AS1 mediated the progression of thoracic aortic aneurysm by not only regulating the function of VSMCs, but also altering vascular development or coagulation function.
Collapse
Affiliation(s)
- Jin Yang
- Department of Orthopaedics, The First Affiliated Hospital of
Kunming Medical University, Yunnan, People's Republic of China
| | - Zhiqiang Gong
- Department of Orthopaedics, The First Affiliated Hospital of
Kunming Medical University, Yunnan, People's Republic of China
| | - Junjie Dong
- Department of Orthopaedics, The First Affiliated Hospital of
Kunming Medical University, Yunnan, People's Republic of China
| | - Haotian Li
- Department of Orthopaedics, The First Affiliated Hospital of
Kunming Medical University, Yunnan, People's Republic of China
| | - Bing Wang
- Department of Orthopaedics, The First Affiliated Hospital of
Kunming Medical University, Yunnan, People's Republic of China
| | - Kaili Du
- Department of Orthopaedics, The First Affiliated Hospital of
Kunming Medical University, Yunnan, People's Republic of China
| | - Chunqiang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of
Kunming Medical University, Yunnan, People's Republic of China
| | - Lingqiang Chen
- Department of Orthopaedics, The First Affiliated Hospital of
Kunming Medical University, Yunnan, People's Republic of China
| |
Collapse
|
13
|
Vimalraj S, Hariprabu KNG, Rahaman M, Govindasami P, Perumal K, Sekaran S, Ganapathy D. Vascular endothelial growth factor-C and its receptor-3 signaling in tumorigenesis. 3 Biotech 2023; 13:326. [PMID: 37663750 PMCID: PMC10474002 DOI: 10.1007/s13205-023-03719-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
The cancer-promoting ligand vascular endothelial growth factor-C (VEGF-C) activates VEGF receptor-3 (VEGFR-3). The VEGF-C/VEGFR-3 axis is expressed by a range of human tumor cells in addition to lymphatic endothelial cells. Activating the VEGF-C/VEGFR-3 signaling enhances metastasis by promoting lymphangiogenesis and angiogenesis inside and around tumors. Stimulation of VEGF-C/VEGFR-3 signaling promotes tumor metastasis in tumors, such as ovarian, renal, pancreatic, prostate, lung, skin, gastric, colorectal, cervical, leukemia, mesothelioma, Kaposi sarcoma, and endometrial carcinoma. We discuss and update the role of VEGF-C/VEGFR-3 signaling in tumor development and the research is still needed to completely comprehend this multifunctional receptor.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | | | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Periyasami Govindasami
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210 USA
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600 077 India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600 077 India
| |
Collapse
|
14
|
Li Q, Zhang H, Zeng Z, Yan S, Hei Y, Zhang Y, Chen Y, Zhang S, Zhou W, Wei S, Sun Y. Functionalized hydrogel-microsphere composites stimulating neurite outgrowth for vascularized bone regeneration. Biomater Sci 2023; 11:5274-5286. [PMID: 37345831 DOI: 10.1039/d3bm00401e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Neurovascularized bone regeneration remains an enormous challenge in the clinic. Biomaterials mimicking the developmental microenvironment might be promising tools to enhance tissue regeneration. In this study, functionalized hydrogel-microsphere composites are developed to enhance bone regeneration via a recapitulating neurovascularized microenvironment. RGD peptide and the porous structure generated by the degradation of gelatin microspheres (GMs) are beneficial for the proliferation and migration of human mesenchymal stem cells (hMSCs); mesoporous silica nanoparticles (MSNs) promote osteogenic differentiation of hMSCs through the delivery of BFP-1 peptide; the QK peptide from the GMs is sustained-released to recruit endogenous endothelial cells (ECs), and IK19 peptide grafted on the hydrogel guides the neurite outgrowth. The in vivo results show that the hydrogel-microsphere composites not only promote new bone formation, but also facilitate nerve infiltration and angiogenesis. Furthermore, the neurovascularized niche created by this composite stimulated neurite growth through MAPK, PI3K, IL17 and TNF signaling pathways, enabling vascularized bone regeneration. The findings suggest a novel bioengineering approach to guide the construction of neurovascularized bone repair materials, which is beneficial for achieving functional bone regeneration and repair.
Collapse
Affiliation(s)
- Qian Li
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - He Zhang
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Ziqian Zeng
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Shuang Yan
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yu Hei
- College of Engineering, Peking University, Beijing 100871, China
| | - Yifei Zhang
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yang Chen
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Siqi Zhang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Wen Zhou
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuhua Sun
- Department of Stomatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
15
|
Bhattacharjee B, Syeda AF, Rynjah D, Hussain SM, Chandra Bora S, Pegu P, Sahu RK, Khan J. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment. Front Pharmacol 2023; 14:1174330. [PMID: 37205904 PMCID: PMC10188950 DOI: 10.3389/fphar.2023.1174330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Head and neck squamous cell carcinoma is a disease that most commonly produce tumours from the lining of the epithelial cells of the lips, larynx, nasopharynx, mouth, or oro-pharynx. It is one of the most deadly forms of cancer. About one to two percent of all neo-plasm-related deaths are attributed to head and neck squamous cell carcinoma, which is responsible for about six percent of all cancers. MicroRNAs play a critical role in cell proliferation, differentiation, tumorigenesis, stress response, triggering apoptosis, and other physiological process. MicroRNAs regulate gene expression and provide new diagnostic, prognostic, and therapeutic options for head and neck squamous cell carcinoma. In this work, the role of molecular signaling pathways related to head and neck squamous cell carcinoma is emphasized. We also provide an overview of MicroRNA downregulation and overexpression and its role as a diagnostic and prognostic marker in head and neck squamous cell carcinoma. In recent years, MicroRNA nano-based therapies for head and neck squamous cell carcinoma have been explored. In addition, nanotechnology-based alternatives have been discussed as a promising strategy in exploring therapeutic paradigms aimed at improving the efficacy of conventional cytotoxic chemotherapeutic agents against head and neck squamous cell carcinoma and attenuating their cytotoxicity. This article also provides information on ongoing and recently completed clinical trials for therapies based on nanotechnology.
Collapse
Affiliation(s)
| | - Ayesha Farhana Syeda
- Department of Pharmaceutics, Unaiza College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Shalam M. Hussain
- Department of Clinical Pharmacy, College of Nursing and Health Sciences, Al-Rayyan Medical College, Madinah, Saudi Arabia
| | | | - Padmanath Pegu
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
16
|
Motlana MK, Ngoepe MN. Computational Fluid Dynamics (CFD) Model for Analysing the Role of Shear Stress in Angiogenesis in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:7886. [PMID: 37175591 PMCID: PMC10178063 DOI: 10.3390/ijms24097886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterised by an attack on healthy cells in the joints. Blood flow and wall shear stress are crucial in angiogenesis, contributing to RA's pathogenesis. Vascular endothelial growth factor (VEGF) regulates angiogenesis, and shear stress is a surrogate for VEGF in this study. Our objective was to determine how shear stress correlates with the location of new blood vessels and RA progression. To this end, two models were developed using computational fluid dynamics (CFD). The first model added new blood vessels based on shear stress thresholds, while the second model examined the entire blood vessel network. All the geometries were based on a micrograph of RA blood vessels. New blood vessel branches formed in low shear regions (0.840-1.260 Pa). This wall-shear-stress overlap region at the junctions was evident in all the models. The results were verified quantitatively and qualitatively. Our findings point to a relationship between the development of new blood vessels in RA, the magnitude of wall shear stress and the expression of VEGF.
Collapse
Affiliation(s)
- Malaika K. Motlana
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Malebogo N. Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
17
|
Fushimi T, Oyama S, Koizumi R, Fujii Y, Osakabe N. Impact of cyanidin 3- O-glucoside on rat micro-and systemic circulation, possibly thorough angiogenesis. J Clin Biochem Nutr 2023; 72:132-138. [PMID: 36936871 PMCID: PMC10017319 DOI: 10.3164/jcbn.22-50] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Cyanidin 3-O-glucoside (C3G), an antioxidant, is one of the most abundant anthocyanin in plant foods. Intervention trials and subsequent meta-analyses have suggested that anthocyanins could reduce the risks of cardiovascular diseases. This study investigated hemodynamic alterations following a single intragastric dose of C3G by measuring blood flow in rat cremaster muscle arteriole for 60 min. Next, in excised aortas, we performed western blotting to measure the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS). A single oral dose of C3G significantly increased blood flow soon after ingestion, and it was maintained throughout the experimental period. In addition, aortic Akt phosphorylation increased. Then, we examined the impact of repeated oral administrations of C3G for 14 days. The mean blood pressure was significantly reduced at 7 and 14 days after treatment, with a slight increase in aortic eNOS expression. Immunohistochemical analyses of the soleus showed that the level of CD31, an angiogenesis-marker protein, was significantly increased with C3G. These results suggested that an oral dose of C3G increased blood flow, which promoted angiogenesis within skeletal muscle, and consequently, blood pressure was reduced.
Collapse
Affiliation(s)
- Taiki Fushimi
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Shiori Oyama
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Ryo Koizumi
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Yasuyuki Fujii
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| | - Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama, Saitama, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Yan C, Ma J, Tian D, Zhang C, Zhang F, Zhao Y, Fu S, Sun Y, Zhang Q. Evaluation of Myocardial Microcirculation in Rats under a High-Altitude Hypoxic Environment by Computed Tomography Myocardial Perfusion Imaging. Int Heart J 2023; 64:928-934. [PMID: 37778996 DOI: 10.1536/ihj.23-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This study aims to examine the changes in myocardial microcirculation in rats in a high-altitude hypoxic environment via computed tomography (CT) myocardial perfusion imaging technology. Rats in two groups were raised in different environments from 4 weeks of age for a period of 24 weeks. At 28 weeks of age, both groups underwent CT myocardial perfusion scanning, and the following myocardial perfusion parameters were measured: time to peak (TTP), mean transit time (MTT), blood flow (BF), and blood volume (BV). Following the scan, the rats were sacrificed, the cardiac index and right ventricular hypertrophy index were obtained, and hematoxylin-eosin (HE) staining was utilized to observe the pathological changes in the myocardium. In the group of rats that are subject to a high-altitude hypoxic environment for 24 weeks (the high-altitude group), the TTP and MTT values were increased (P < 0.05), the BF and BV values were lower (P < 0.05), the right heart mass was higher (P < 0.05) than that in the low-altitude group. As shown by the pathological results of HE staining, the gap between cardiomyocytes in the high-altitude group was widened, the arrangement of cardiomyocytes was irregular, and the cells were filled with a few fat vacuoles. The myocardial microcirculation is altered in a high-altitude hypoxic environment. In particular, the myocardium is in a state of inadequate perfusion, the BF in the myocardium slows down, and the right heart displays compensatory hypertrophy.
Collapse
Affiliation(s)
- Chunlong Yan
- Suzhou Medical College of Soochow University
- Department of Radiology, Qinghai Provincial People's Hospital
- Department of Radiology, Jining No.1 People's Hospital
| | - Jinfeng Ma
- Suzhou Medical College of Soochow University
- Department of Hematology, Jining No.1 People's Hospital
| | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Fengjuan Zhang
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Yuchun Zhao
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Shihan Fu
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Yanqiu Sun
- Suzhou Medical College of Soochow University
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital
| |
Collapse
|
19
|
Cheng A, Zhao Z, Liu H, Yang J, Luo J. The physiological mechanism and effect of resistance exercise on cognitive function in the elderly people. Front Public Health 2022; 10:1013734. [PMID: 36483263 PMCID: PMC9723356 DOI: 10.3389/fpubh.2022.1013734] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background As brain function declines and cognitive ability declines, the benefits of resistance exercise to the brain of older people are gradually gaining attention. Objective The purpose of this review is to explore the mechanism and relationship between physiological factors such as vascular and neuronal degeneration and cognitive decline, and to categorize the differences in the effects of an acute and chronic resistance exercise intervention on cognitive function in healthy elderly people and the possible regulators of cognitive effects. Methods Using PubMed, Elsevier, Web of Science, X-MOL, CNKI, and Taiwan academic literature database, the research papers published in relevant journals at home and abroad until April 2022 were searched with Chinese and English keywords such as Resistance exercise, the elderly, hippocampus, memory performance, neurons, cognitive function. Pedro scale was used to check the quality of various documents, and the relevant research documents were obtained with the resistance exercise elements as the main axis for comprehensive analysis. Results and conclusion (1) Resistance exercise can have a beneficial effect on the brain function of the elderly through blood flow changes, stimulate nerve conduction substances and endocrine metabolism, promote cerebrovascular regeneration and gray matter volume of the brain, and prevent or delay the cognitive function degradation such as memory and attention of the elderly; (2) Acute resistance can temporarily stimulate hormone secretion in vivo and significantly improve the effect of short-term memory test, but it has little effect on the cognitive performance of the elderly; (3) Moderate-high intensity resistance exercise (50-80%1RM, 1-3 times/week, 2-3 groups/time) lasting for at least 6 months is more prominent for the improvement of cognitive function of the elderly, while the parameters such as resistance exercise intensity, exercise amount, duration, evaluation test time and differences of subjects may have different degrees of influence on cognitive benefits.
Collapse
|
20
|
Long Y, Chen H, Deng J, Ning J, Yang P, Qiao L, Cao Z. Deficiency of endothelial FGFR1 alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice. Front Pharmacol 2022; 13:1039103. [PMID: 36467073 PMCID: PMC9716472 DOI: 10.3389/fphar.2022.1039103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Disrupted neonatal lung angiogenesis and alveologenesis often give rise to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. Hyperoxia-induced pulmonary vascular and alveolar damage in premature infants is one of the most common and frequent factors contributing to BPD. The purpose of the present study was to explore the key molecules and the underlying mechanisms in hyperoxia-induced lung injury in neonatal mice and to provide a new strategy for the treatment of BPD. In this work, we reported that hyperoxia decreased the proportion of endothelial cells (ECs) in the lungs of neonatal mice. In hyperoxic lung ECs of neonatal mice, we detected upregulated fibroblast growth factor receptor 1 (FGFR1) expression, accompanied by upregulation of the classic downstream signaling pathway of activated FGFR1, including the ERK/MAPK signaling pathway and PI3K-Akt signaling pathway. Specific deletion of Fgfr1 in the ECs of neonatal mice protected the lungs from hyperoxia-induced lung injury, with improved angiogenesis, alveologenesis and respiratory metrics. Intriguingly, the increased Fgfr1 expression was mainly attributed to aerosol capillary endothelial (aCap) cells rather than general capillary endothelial (gCap) cells. Deletion of endothelial Fgfr1 increased the expression of gCap cell markers but decreased the expression of aCap cell markers. Additionally, inhibition of FGFR1 by an FGFR1 inhibitor improved alveologenesis and respiratory metrics. In summary, this study suggests that in neonatal mice, hyperoxia increases the expression of endothelial FGFR1 in lung ECs and that deficiency of endothelial Fgfr1 can ameliorate hyperoxia-induced BPD. These data suggest that FGFR1 may be a potential therapeutic target for BPD, which will provide a new strategy for the prevention and treatment of BPD.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Qiao
- *Correspondence: Lina Qiao, ; Zhongwei Cao,
| | | |
Collapse
|
21
|
Li M, Zhao YY, Cui JF. Matrix stiffness in regulation of tumor angiogenesis. Shijie Huaren Xiaohua Zazhi 2022; 30:871-878. [DOI: 10.11569/wcjd.v30.i20.871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the most common malignant features of solid tumors such as liver cancer, pancreatic cancer, and gastrointestinal tumors, which is the basis of tumor growth, invasion, and metastasis. It is also an important target of anti-tumor therapy. Tumor angiogenesis is usually triggered by biochemical, hypoxic, and biomechanical factors in the microenvironment. The regulation of biochemical signals and hypoxic microenvironment in tumor angiogenesis have been widely documented, but the role of biomechanical signals in tumor angiogenesis has gradually begun to be uncovered in recent years. The vasculature system is naturally sensitive to mechanical stimuli. Recent studies have highlighted the important regulatory effects of biomechanical stimuli, such as matrix stiffness, fluid shear stress, and vascular lumen pressure, on the phenotype and functions of tumor blood vessels. In this paper, we summarize the new progress and internal mechanisms of matrix stiffness-mediated effects on tumor angiogenesis.
Collapse
Affiliation(s)
- Miao Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying-Ying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
22
|
Zhou J, Hu Y, Zhu W, Nie C, Zhao W, Faje AT, Labelle KE, Swearingen B, Lee H, Hedley-Whyte ET, Zhang X, Jones PS, Miller KK, Klibanski A, Zhou Y, Soberman RJ. Sprouting Angiogenesis in Human Pituitary Adenomas. Front Oncol 2022; 12:875219. [PMID: 35600354 PMCID: PMC9117625 DOI: 10.3389/fonc.2022.875219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Angiogenesis in pituitary tumors is not fully understood, and a better understanding could help inform new pharmacologic therapies, particularly for aggressive pituitary tumors. Materials and Methods 219 human pituitary tumors and 12 normal pituitary glands were studied. Angiogenic genes were quantified by an angiogenesis qPCR array and a TaqMan probe-based absolute qPCR. Angiogenesis inhibition in pituitary tumors was evaluated in vitro with the endothelial tube formation assay and in vivo in RbΔ19 mice. Results 71 angiogenic genes, 40 of which are known to be involved in sprouting angiogenesis, were differentially expressed in pituitary tumors. Expression of endothelial markers CD31, CD34, and ENG was significantly higher in pituitary tumors, by 5.6, 22.3, and 8.2-fold, respectively, compared to in normal pituitary tissue. There was no significant difference in levels of the lymphatic endothelial marker LYVE1 in pituitary tumors compared with normal pituitary gland tissue. Pituitary tumors also expressed significantly higher levels of angiogenesis growth factors, including VEGFA (4.2-fold), VEGFB (2.2), VEGFC (19.3), PGF (13.4), ANGPT2 (9.2), PDGFA (2.7), PDGFB (10.5) and TGFB1 (3.8) compared to normal pituitary tissue. Expression of VEGFC and PGF was highly correlated with the expression of endothelial markers in tumor samples, including CD31, CD34, and ENG (endoglin, a co-receptor for TGFβ). Furthermore, VEGFR inhibitors inhibited angiogenesis induced by human pituitary tumors and prolonged survival of RbΔ19 mice. Conclusion Human pituitary tumors are characterized by more active angiogenesis than normal pituitary gland tissue in a manner consistent with sprouting angiogenesis. Angiogenesis in pituitary tumors is regulated mainly by PGF and VEGFC, not VEGFA and VEGFB. Angiogenesis inhibitors, such as the VEGFR2 inhibitor cabozantinib, may merit further investigation as therapies for aggressive human pituitary tumors.
Collapse
Affiliation(s)
- Jie Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yaomin Hu
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Wende Zhu
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Chuansheng Nie
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexander T. Faje
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kay E. Labelle
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brooke Swearingen
- Neurosurgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - E. Tessa Hedley-Whyte
- Department of Pathology (Neuropathology), Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pamela S. Jones
- Neurosurgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Karen K. Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Yunli Zhou,
| | - Roy J. Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Rodriguez SMB, Staicu GA, Sevastre AS, Baloi C, Ciubotaru V, Dricu A, Tataranu LG. Glioblastoma Stem Cells-Useful Tools in the Battle against Cancer. Int J Mol Sci 2022; 23:ijms23094602. [PMID: 35562993 PMCID: PMC9100635 DOI: 10.3390/ijms23094602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma stem cells (GSCs) are cells with a self-renewal ability and capacity to initiate tumors upon serial transplantation that have been linked to tumor cell heterogeneity. Most standard treatments fail to completely eradicate GSCs, causing the recurrence of the disease. GSCs could represent one reason for the low efficacy of cancer therapy and for the short relapse time. Nonetheless, experimental data suggest that the presence of therapy-resistant GSCs could explain tumor recurrence. Therefore, to effectively target GSCs, a comprehensive understanding of their biology and the survival and developing mechanisms during treatment is mandatory. This review provides an overview of the molecular features, microenvironment, detection, and targeting strategies of GSCs, an essential information required for an efficient therapy. Despite the outstanding results in oncology, researchers are still developing novel strategies, of which one could be targeting the GSCs present in the hypoxic regions and invasive edge of the glioblastoma.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Carina Baloi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
| | - Vasile Ciubotaru
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
- Correspondence:
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
- Department 6—Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|