1
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Ballal S, Pathak PK, Bareja L, Aminov Z, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. Exosomal non-coding RNAs: key regulators of inflammation-related cardiovascular disorders. Eur J Med Res 2025; 30:395. [PMID: 40390035 PMCID: PMC12087048 DOI: 10.1186/s40001-025-02649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/30/2025] [Indexed: 05/21/2025] Open
Abstract
Inflammation is a complex, tightly regulated process involving biochemical and cellular reactions to harmful stimuli. Often termed "the internal fire", it is crucial for protecting the body and facilitating tissue healing. While inflammation is essential for survival, chronic inflammation can be detrimental, leading to tissue damage and reduced survival. The innate immune system triggers inflammation, closely linked to the development of heart diseases, with significant consequences for individuals. Inflammation in arterial walls or the body substantially contributes to atherosclerotic disease progression, affecting the cardiovascular system. Altered lipoproteins increase the risk of excessive blood clotting, a hallmark of atherosclerotic cardiovascular disease and its complications. Integrating inflammatory biomarkers with established risk assessment techniques can enhance our ability to identify at-risk individuals, assess their risk severity, and recommend appropriate CVD prevention strategies. Exosomes, a type of extracellular vesicle, are released by various cells and mediate cell communication locally and systemically. In the past decade, exosomes have been increasingly studied for their vital roles in health maintenance and disease processes. They can transport substances like non-coding RNAs, lipids, and proteins between cells, influencing immune responses and inflammation to elicit harmful or healing effects. This study focuses on the critical role of inflammation in heart disease progression and how non-coding RNAs in exosomes modulate the inflammatory process, either exacerbating or alleviating inflammation-related damage in the cardiovascular system.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Wang Y, Liu H, Wang S, Yang B, Sun D, Han S. Feasibility study of core training in knee injury recovery. Turk J Phys Med Rehabil 2025; 71:37-47. [PMID: 40270628 PMCID: PMC12012924 DOI: 10.5606/tftrd.2024.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/10/2024] [Indexed: 04/25/2025] Open
Abstract
Objectives This study aims to investigate the effects of core and routine training on joint function, anterior tibia translation and balance in patients with knee joint injury. Patients and methods Between March 2021 and March 2022, a total of 70 patients (49 males, 21 females; mean age: 31.2±5.3 years; range, 17 to 44 years) with knee ligament injury or meniscus injury were included. The patients were divided into core training group (n=35) and conventional training group (n=35) by matching method. During the recovery process, the regular training group performed routine training, whereas the core training group engaged in core training. Both groups were trained for a total of eight weeks. After training, the Visual Analog Scale (VAS), knee Lysholm score, KT-2000 tibial anterior translation, and the star excursion balance test (SEBT) results were collected. Results The mean VAS scores in both groups were decreased from baseline values. The mean Lysholm score increased from baseline data; the degree of tibial anterior translation decreased compared with baseline data (p<0.05). The mean SEBT scores showed significant improvement over baseline data. In contrast with the routine training group, the mean VAS score of core training was lower and the total score of Lysholm was higher (p<0.05). When bending the knee at 90°, the mean tibial anterior translation was 3.87±1.23 mm in the core training group, significantly lower than in the regular training group (p<0.05). The SEBT results showed that, after eight weeks of training, healthy and injured legs in core training group exceeded those of the regular training group in the farthest distance (p<0.05). Conclusion Our study results indicate that core training is more successful than regular training in reducing pain, and it can ameliorate the dynamic balance stability of patients with knee injury.
Collapse
Affiliation(s)
- Yue Wang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Hui Liu
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Shuyuan Wang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Bo Yang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Di Sun
- Department of Orthopedics, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Shuangyang Han
- Department of Orthopedics, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| |
Collapse
|
3
|
Yu T, Liu H, Gao M, Liu D, Wang J, Zhang J, Wang J, Yang P, Zhang X, Liu Y. Dexmedetomidine regulates exosomal miR-29b-3p from macrophages and alleviates septic myocardial injury by promoting autophagy in cardiomyocytes via targeting glycogen synthase kinase 3β. BURNS & TRAUMA 2024; 12:tkae042. [PMID: 39502342 PMCID: PMC11534962 DOI: 10.1093/burnst/tkae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 11/08/2024]
Abstract
Background Our previous research suggested that dexmedetomidine (Dex) promotes autophagy in cardiomyocytes, thus safeguarding them against apoptosis during sepsis. However, the underlying mechanisms of Dex-regulated autophagy have remained elusive. This study aimed to explore the role of exosomes and how they participate in Dex-induced cardioprotection in sepsis. The underlying microRNA (miRNA) mechanisms and possible therapeutic targets for septic myocardial injury were identified. Methods We first collected plasma exosomes from rats with sepsis induced by caecal ligation and puncture (CLP) with or without Dex treatment, and then incubated them with H9c2 cells to observe the effect on cardiomyocytes. Subsequently, the differential expression of miRNAs in plasma exosomes from each group of rats was identified through miRNA sequencing. miR-29b-3p expression in circulating exosomes of septic or non-septic patients, as well as in lipopolysaccharide-induced macrophages after Dex treatment, was analysed by quantitative real-time polymerase chain reaction (qRT-PCR). The autophagy level of cardiomyocytes after macrophage-derived exosome treatment was assessed by an exosome tracing assay, western blotting, and an autophagic flux assay. Specific miRNA mimics and inhibitors or small interfering RNAs were used to predict and evaluate the function of candidate miRNA and its target genes by qRT-PCR, annexin V/propyl iodide staining, autophagy flux analysis, and western blotting. Results We found that plasma-derived exosomes from Dex-treated rats promoted cardiomyocyte autophagy and exerted antiapoptotic effects. Additionally, they exhibited a high expression of miRNA, including miR-29b-3p. Conversely, a significant decrease in miR-29b-3p was observed in circulating exosomes from CLP rats, as well as in plasma exosomes from sepsis patients. Furthermore, Dex upregulated the lipopolysaccharide-induced decrease in miR-29b-3p expression in macrophage-derived exosomes. Exosomal miR-29b-3p from macrophages is thought to be transferred to cardiomyocytes, thus leading to the promotion of autophagy in cardiomyocytes. Database predictions, luciferase reporter assays, and small interfering RNA intervention confirmed that glycogen synthase kinase 3β (GSK-3β) is a target of miR-29b-3p. miR-29b-3p promotes cardiomyocyte autophagy by inhibiting GSK-3β expression and activation. Conclusions These findings demonstrate that Dex attenuates sepsis-associated myocardial injury by modulating exosome-mediated macrophage-cardiomyocyte crosstalk and that the miR-29b-3p/GSK-3β signaling pathway represents a hopeful target for the treatment of septic myocardial injury.
Collapse
Affiliation(s)
- Tianyi Yu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Hsinying Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Min Gao
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Dan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - JiaQiang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Jie Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Xiong Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| |
Collapse
|
4
|
Wang R, Chen RL, Wu C, Zhang XC, Wu WY, Dai C, Wang Y, Li G. The gut microbiotas with metabolites regulate the protective role of miR-30a-5p in myocardial infarction. J Adv Res 2024:S2090-1232(24)00472-7. [PMID: 39442873 DOI: 10.1016/j.jare.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/21/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Gut microbial homeostasis is closely associated with myocardial infarction (MI). However, little is known about how gut microbiota influences miRNAs-regulated MI. OBJECTIVES This study aims to elucidate the connections between miR-30a-5p, MI, gut microbiota, and gut microbial metabolite-related pathways, to explore potential strategy for preventing and treating MI. METHODS We evaluated the effects of knocking out (KO) or overexpressing (OE) miR-30a-5p on MI by assessing cardiac structure and function, myocardial enzyme levels, and apoptosis. Then, we applied 16S rDNA sequencing and metabolomics to explore how intestinal microecology and its microorganisms affect miR-30a-5p-regulated MI. RESULTS The results showed that KO exacerbated MI, whereas OE improved MI damage, compared to the wild-type (WT) mice. KO exacerbated intestinal barrier structure deterioration and further downregulated the expression of Cloudin-1, Occludin, and ZO-1 in MI mice. 16S rDNA sequencing-analyzed gut microbiome of KO and WT mice found that KO mainly reduced g_Lactobacillus. Transplanting fecal microorganisms from KO mice aggravated MI damage in WT mice. However, administering probiotics (mainly containing Lactobacillus) helped neutralize these damages. Intriguingly, fecal microbiota transplantation from OE mice reduced MI damage. Analysis of intestinal microbial metabolites in KO and WT mice found that KO may mainly affect ABC transporters. ABCC1 was identified as the target of KO-aggravated MI. Furthermore, fecal transplantation microorganisms of MI patients aggravated MI injury in mice and miR-30a-5p and ABCC1 were involved in the process. CONCLUSIONS Our findings demonstrate that miR-30a-5p regulates MI by affecting intestinal microbiota homeostasis and targeting ABCC1. This highlights the critical importance of maintaining a healthy gut microbiota homeostasis in MI management.
Collapse
Affiliation(s)
- Ruiying Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian 361000, China
| | - Ruo-Lan Chen
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiao-Cheng Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian 361000, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian 361000, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian 361000, China.
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian 361000, China.
| |
Collapse
|
5
|
Xiao H, Pu J, Jiang G, Pan C, Xu J, Zhang B, Bai M. Analysis of long non-coding RNA RMRP in the diagnosis and prognosis of coronary artery disease. J Cardiothorac Surg 2024; 19:341. [PMID: 38907341 PMCID: PMC11191311 DOI: 10.1186/s13019-024-02870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are abundant and closely related to the occurrence and development of human diseases. LncRNAs are known to play a key role in many cardiovascular diseases. The purpose of this study was to investigate the effect of the RNA component of mitochondrial RNA-processing endoribonuclease (RMRP) on the degree of coronary artery lesions and prognosis in patients with coronary artery disease (CAD). METHODS Patients who underwent coronary angiography (CAG) and dynamical-single photon emission computed tomography (D-SPECT) were selected as study subjects, and the results of CAG were reviewed, and the patients were grouped according to SYNTAX score. Evaluate the factors affecting SYNTAX scores. The follow-up analysis was conducted, and the endpoint events were major adverse cardiovascular events (MACEs). Kaplan-Meier method was used to estimate the survival rate, and multivariate Cox regression was used to analyze the relationship between RMRP and MACEs. RESULTS The expression level of serum RMRP in patients with CAD was significantly higher than that in healthy people. Multivariate Logistic regression analysis showed that age, low-density lipoprotein cholesterol (LDL-C), RMRP and rest left ventricular ejection fraction (LVEF) were independent factors that affected SYNTAX scores. There were 19 cases of MACEs in the high RMRP group and 9 cases in the low RMRP group, and there was a significant difference in the MACE free survival curve between the two groups. Multivariate Cox regression analysis showed that age, SYNTAX score, rest LVEF and RMRP were risk factors for MACEs. CONCLUSIONS Serum RMRP is a key factor affecting the degree of coronary artery disease and prognosis in CAD patients.
Collapse
Affiliation(s)
- Haiyan Xiao
- Cardiovascular Department, Changde First Hospital of Traditional Chinese Medicine, Hunan, 415000, China
| | - Jun Pu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No.1, Maoyuan South Road, Shunqing District, Nanchong, Sichuan, 637000, China.
| | - Gaxue Jiang
- Heart Center, The First Hospital of Lanzhou University, Chengguan District, No.1 Donggang West Road, Lanzhou, Gansu, 730000, China.
| | - Chenliang Pan
- Heart Center, The First Hospital of Lanzhou University, Chengguan District, No.1 Donggang West Road, Lanzhou, Gansu, 730000, China
| | - Jizhe Xu
- Heart Center, The First Hospital of Lanzhou University, Chengguan District, No.1 Donggang West Road, Lanzhou, Gansu, 730000, China
| | - Bo Zhang
- Heart Center, The First Hospital of Lanzhou University, Chengguan District, No.1 Donggang West Road, Lanzhou, Gansu, 730000, China
| | - Ming Bai
- Heart Center, The First Hospital of Lanzhou University, Chengguan District, No.1 Donggang West Road, Lanzhou, Gansu, 730000, China
| |
Collapse
|
6
|
González-Blanco C, Iglesias-Fortes S, Lockwood ÁC, Figaredo C, Vitulli D, Guillén C. The Role of Extracellular Vesicles in Metabolic Diseases. Biomedicines 2024; 12:992. [PMID: 38790954 PMCID: PMC11117504 DOI: 10.3390/biomedicines12050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Extracellular vesicles represent a group of structures with the capacity to communicate with different cells and organs. This complex network of interactions can regulate multiple physiological processes in the organism. Very importantly, these processes can be altered during the appearance of different diseases including cancer, metabolic diseases, etc. In addition, these extracellular vesicles can transport different cargoes, altering the initiation of the disease, driving the progression, or even accelerating the pathogenesis. Then, we have explored the implication of these structures in different alterations such as pancreatic cancer, and in different metabolic alterations such as diabetes and its complications and non-alcoholic fatty liver disease. Finally, we have explored in more detail the communication between the liver and the pancreas. In summary, extracellular vesicles represent a very efficient system for the communication among different tissues and permit an efficient system as biomarkers of the disease, as well as being involved in the extracellular-vesicle-mediated transport of molecules, serving as a potential therapy for different diseases.
Collapse
Affiliation(s)
- Carlos González-Blanco
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; (C.G.-B.); (Á.C.L.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
- IdISSC, 28040 Madrid, Spain
- Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, 28001 Madrid, Spain
| | - Sarai Iglesias-Fortes
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
| | - Ángela Cristina Lockwood
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; (C.G.-B.); (Á.C.L.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
- Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, 28001 Madrid, Spain
| | - César Figaredo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
| | - Daniela Vitulli
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
| | - Carlos Guillén
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; (C.G.-B.); (Á.C.L.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
- IdISSC, 28040 Madrid, Spain
- Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, 28001 Madrid, Spain
| |
Collapse
|
7
|
Gheidari ME, Geramifard A, Rafiei M. Dysregulation of LncRNAs ANRIL, MALAT1, and LINC00305 in Coronary Slow Flow Patients: Implications for Inflammation and Endothelial Dysfunction. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:91-104. [PMID: 39156871 PMCID: PMC11329937 DOI: 10.22088/ijmcm.bums.13.1.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Coronary Slow Flow (CSF) is observed in individuals who experience delayed blood supply in the coronary arteries. Inflammation and endothelial dysfunction may play a role in the etiology and development of CSF. The current investigation aimed to compare the expression of specific long noncoding RNAs (lncRNAs) associated with endothelial dysfunction and inflammation in CSF patients. This case‒control study enrolled 72 CSF patients and 71 healthy individuals. Blood samples were collected, and serum marker levels were measured. The expression levels of lncRNAs ANRIL, MALAT1, and LINC00305 in peripheral blood mononuclear cells (PBMCs) were assessed using real-time Polymerase Chain Reaction (PCR). All statistical analyses were performed using SPSS 22, with the significance level set at P < 0.05. The study revealed that the relative expression of MALAT1 and LINC00305 was significantly lower in the CSF group (p < 0.01), whereas ANRIL was expressed at higher levels (p < 0.0001). The areas under the ROC curves (AUCs) for MALAT1, LINC00305, and ANRIL were 0.64, 0.66, and 0.75, respectively. Notably, the expression level of LINC00305 exhibited an inverse correlation with CSF incidence (OR: 0.83, p: 0.008) in contrast to that of ANRIL (OR: 1.43, p < 0.0001). Additionally, compared to those in the control group, the average BMI, WBC, RBC, Hb, LDH, LDL, FBS, and percentage of neutrophils in the CSF group were significantly greater (p< 0.05). lncRNA ANRIL is upregulated in CSF patients, whereas MALAT1 and LINC00305 are downregulated. Dysregulation of ANRIL, MALAT1, and LINC00305 may serve as diagnostic and predictive factors for CSF leakage.
Collapse
Affiliation(s)
- Mohammad Esmail Gheidari
- Department of Cardiology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asal Geramifard
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahyar Rafiei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Lu Q, Tang Y, Luo S, Gong Q, Li C. Coptisine, the Characteristic Constituent from Coptis chinensis, Exhibits Significant Therapeutic Potential in Treating Cancers, Metabolic and Inflammatory Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2121-2156. [PMID: 37930333 DOI: 10.1142/s0192415x2350091x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Naturally derived alkaloids belong to a class of quite significant organic compounds. Coptisine, a benzyl tetrahydroisoquinoline alkaloid, is one of the major bioactive constituents in Coptis chinensis Franch., which is a famous traditional Chinese medicine. C. chinensis possesses many kinds of functions, including the ability to eliminate heat, expel dampness, purge fire, and remove noxious substances. In Asian countries, C. chinensis is traditionally employed to treat carbuncle and furuncle, diabetes, jaundice, stomach and intestinal disorders, red eyes, toothache, and skin disorders. Up to now, there has been plenty of research of coptisine with respect to its pharmacology. Nevertheless, a comprehensive review of coptisine-associated research is urgently needed. This paper was designed to summarize in detail the progress in the research of the pharmacology, pharmacokinetics, safety, and formulation of coptisine. The related studies included in this paper were retrieved from the following academic databases: The Web of Science, PubMed, Google scholar, Elsevier, and CNKI. The cutoff date was January 2023. Coptisine manifests various pharmacological actions, including anticancer, antimetabolic disease, anti-inflammatory disease, and antigastrointestinal disease effects, among others. Based on its pharmacokinetics, the primary metabolic site of coptisine is the liver. Coptisine is poorly absorbed in the gastrointestinal system, and most of it is expelled in the form of its prototype through feces. Regarding safety, coptisine displayed potential hepatotoxicity. Some novel formulations, including the [Formula: see text]-cyclodextrin-based inclusion complex and nanocarriers, could effectively enhance the bioavailability of coptisine. The traditional use of C. chinensis is closely connected with the pharmacological actions of coptisine. Although there are some disadvantages, including poor solubility, low bioavailability, and possible hepatotoxicity, coptisine is still a prospective naturally derived drug candidate, especially in the treatment of tumors as well as metabolic and inflammatory diseases. Further investigation of coptisine is necessary to facilitate the application of coptisine-based drugs in clinical practice.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Shuang Luo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518005, P. R. China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| |
Collapse
|
9
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
11
|
Martín-Bórnez M, Falcón D, Morrugares R, Siegfried G, Khatib AM, Rosado JA, Galeano-Otero I, Smani T. New Insights into the Reparative Angiogenesis after Myocardial Infarction. Int J Mol Sci 2023; 24:12298. [PMID: 37569674 PMCID: PMC10418963 DOI: 10.3390/ijms241512298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) causes massive loss of cardiac myocytes and injury to the coronary microcirculation, overwhelming the limited capacity of cardiac regeneration. Cardiac repair after MI is finely organized by complex series of procedures involving a robust angiogenic response that begins in the peri-infarcted border area of the infarcted heart, concluding with fibroblast proliferation and scar formation. Efficient neovascularization after MI limits hypertrophied myocytes and scar extent by the reduction in collagen deposition and sustains the improvement in cardiac function. Compelling evidence from animal models and classical in vitro angiogenic approaches demonstrate that a plethora of well-orchestrated signaling pathways involving Notch, Wnt, PI3K, and the modulation of intracellular Ca2+ concentration through ion channels, regulate angiogenesis from existing endothelial cells (ECs) and endothelial progenitor cells (EPCs) in the infarcted heart. Moreover, cardiac repair after MI involves cell-to-cell communication by paracrine/autocrine signals, mainly through the delivery of extracellular vesicles hosting pro-angiogenic proteins and non-coding RNAs, as microRNAs (miRNAs). This review highlights some general insights into signaling pathways activated under MI, focusing on the role of Ca2+ influx, Notch activated pathway, and miRNAs in EC activation and angiogenesis after MI.
Collapse
Affiliation(s)
- Marta Martín-Bórnez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Débora Falcón
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Rosario Morrugares
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
- Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Geraldine Siegfried
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France (A.-M.K.)
| | - Abdel-Majid Khatib
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France (A.-M.K.)
| | - Juan A. Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003 Caceres, Spain;
| | - Isabel Galeano-Otero
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
12
|
Rahimian N, Sheida A, Rajabi M, Heidari MM, Tobeiha M, Esfahani PV, Ahmadi Asouri S, Hamblin MR, Mohamadzadeh O, Motamedzadeh A, Khaksary Mahabady M. Non-coding RNAs and exosomal non-coding RNAs in pituitary adenoma. Pathol Res Pract 2023; 248:154649. [PMID: 37453360 DOI: 10.1016/j.prp.2023.154649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Pituitary adenoma (PA) is the third most common primary intracranial tumor in terms of overall disease incidence. Although they are benign tumors, they can have a variety of clinical symptoms, but are mostly asymptomatic, which often leads to diagnosis at an advanced stage when surgical intervention is ineffective. Earlier identification of PA could reduce morbidity and allow better clinical management of the affected patients. Non-coding RNAs (ncRNAs) do not generally code for proteins, but can modulate biological processes at the post-transcriptional level through a variety of molecular mechanisms. An increased number of ncRNA expression profiles have been found in PAs. Therefore, understanding the expression patterns of different ncRNAs could be a promising method for developing non-invasive biomarkers. This review summarizes the expression patterns of dysregulated ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) involved in PA, which could one day serve as innovative biomarkers or therapeutic targets for the treatment of this neoplasia. We also discuss the potential molecular pathways by which the dysregulated ncRNAs could cause PA and affect its progression.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Rajabi
- Department of Pathology, Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Nezhad Nezhad MT, Rajabi M, Nekooeizadeh P, Sanjari S, Pourvirdi B, Heidari MM, Veradi Esfahani P, Abdoli A, Bagheri S, Tobeiha M. Systemic lupus erythematosus: From non-coding RNAs to exosomal non-coding RNAs. Pathol Res Pract 2023; 247:154508. [PMID: 37224659 DOI: 10.1016/j.prp.2023.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE), as an immunological illness, frequently impacts young females. Both vulnerabilities to SLE and the course of the illness's clinical symptoms have been demonstrated to be affected by individual differences in non-coding RNA expression. Many non-coding RNAs (ncRNAs) are out of whack in patients with SLE. Because of the dysregulation of several ncRNAs in peripheral blood of patients suffering from SLE, these ncRNAs to be showed valuable as biomarkers for medication response, diagnosis, and activity. NcRNAs have also been demonstrated to influence immune cell activity and apoptosis. Altogether, these facts highlight the need of investigating the roles of both families of ncRNAs in the progress of SLE. Being aware of the significance of these transcripts perhaps elucidates the molecular pathogenesis of SLE and could open up promising avenues to create tailored treatments during this condition. In this review we summarized various non-coding RNAs and Exosomal non-coding RNAs in SLE.
Collapse
Affiliation(s)
| | - Mohammadreza Rajabi
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Nekooeizadeh
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sanjari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Pourvirdi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Mehdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Abdoli
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Bagheri
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Mishra S, Raval M, Kachhawaha AS, Tiwari BS, Tiwari AK. Aging: Epigenetic modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:171-209. [PMID: 37019592 DOI: 10.1016/bs.pmbts.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Aging is one of the most complex and irreversible health conditions characterized by continuous decline in physical/mental activities that eventually poses an increased risk of several diseases and ultimately death. These conditions cannot be ignored by anyone but there are evidences that suggest that exercise, healthy diet and good routines may delay the Aging process significantly. Several studies have demonstrated that Epigenetics plays a key role in Aging and Aging-associated diseases through methylation of DNA, histone modification and non-coding RNA (ncRNA). Comprehension and relevant alterations in these epigenetic modifications can lead to new therapeutic avenues of age-delaying contrivances. These processes affect gene transcription, DNA replication and DNA repair, comprehending epigenetics as a key factor in understanding Aging and developing new avenues for delaying Aging, clinical advancements in ameliorating aging-related diseases and rejuvenating health. In the present article, we have described and advocated the epigenetic role in Aging and associated diseases.
Collapse
|
16
|
Gupta J, Kareem Al-Hetty HRA, Aswood MS, Turki Jalil A, Azeez MD, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The key role of microRNA-766 in the cancer development. Front Oncol 2023; 13:1173827. [PMID: 37205191 PMCID: PMC10185842 DOI: 10.3389/fonc.2023.1173827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer is caused by defects in coding and non-coding RNAs. In addition, duplicated biological pathways diminish the efficacy of mono target cancer drugs. MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that regulate many target genes and play a crucial role in physiological processes such as cell division, differentiation, cell cycle, proliferation, and apoptosis, which are frequently disrupted in diseases such as cancer. MiR-766, one of the most adaptable and highly conserved microRNAs, is notably overexpressed in several diseases, including malignant tumors. Variations in miR-766 expression are linked to various pathological and physiological processes. Additionally, miR-766 promotes therapeutic resistance pathways in various types of tumors. Here, we present and discuss evidence implicating miR-766 in the development of cancer and treatment resistance. In addition, we discuss the potential applications of miR-766 as a therapeutic cancer target, diagnostic biomarker, and prognostic indicator. This may shed light on the development of novel therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Hussein Riyadh Abdul Kareem Al-Hetty
- Department of Nursing, Al-Maarif University College, Ramadi, Anbar, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | - Murtadha Sh. Aswood
- Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Azogues, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| |
Collapse
|