1
|
Li Y, Liu Y, Xie S, Zhu Y, Ding X, Zhang W, Xian S, Wu G, Sun H, Yan J, Lu B, Yao Y, Qian W, Lu Y, Yang Y, Xu D, Huang R, Ji S. Metabolic response to burn injury: a comprehensive bibliometric study. Front Med (Lausanne) 2025; 11:1451371. [PMID: 39830385 PMCID: PMC11739346 DOI: 10.3389/fmed.2024.1451371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Objective Burns lead to systemic changes manifested by systemic disturbances in water-electrolyte balance and systemic metabolic and inflammatory responses. The hypermetabolic response after a burn injury relies on metabolic, hormonal, and inflammatory dysregulation mechanisms. This study aimed to provide a comprehensive bibliometric analysis of the burn metabolism research field, identifying key trends, influential contributors, and emerging research hotspots to inform future investigative efforts. Ultimately, we conducted an extensive review of the literature, synthesizing the findings to clarify the present understanding within our field of study. Methods We obtained 8,823 scientific publications on burn injury and metabolism from the core Web of Science (WOS) database collection. In this work, biblioshiny was used to visualize and analyze the data, and VOSviewer was used to verify the results. Results From a total of 8,823 publications, we found a general upward trend in annual publications and citation frequency. According to Bradford's Law, 21 high-production journals were classified as core sources based on the number of publications, and the most productive journal was Burns. The most published countries and authors in this field were the United States and Herndon DN. The most local cited document in this field was the article titled "Catecholamines: Mediator of the Hypermetabolic Response to Thermal Injury" authored by Wilmore DW. The thematic map showed that studies on injury, thermal injury, and sepsis were relatively mature. In contrast, research on metabolism, stress, and responses, and research on mortality, resistance, and management were less well-developed but were essential for the field. Conclusion Research on burns and metabolism is increasing. Based on the bibliometric analysis, our study summarized the complex interplay between burn-induced systemic metabolic alterations and inflammatory responses, emphasizing the significance of hypermetabolism and its management. The role of propranolol, insulin, oxandrolone, and nutritional interventions in modulating the hypermetabolic state was discussed. Additionally, our study underscored the challenges of managing sepsis and drug-resistant infections in burn patients as an important future area of research.
Collapse
Affiliation(s)
- Yixu Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sujie Xie
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinran Ding
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guosheng Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Sun
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jiale Yan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijin Qian
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Lu J, Zhang W, Zhu Y, Luo P, Tong X, Xie S, Jiang L, Guo X, Huang J, Gu M, Ding X, Xian S, Huang R, Ji S, Xia Z. Revealing the Therapeutic Potential of Stem Cells in Burn Healing: A Deeper Understanding of the Therapeutic Mechanisms of Epidermal Stem Cells and Mesenchymal Stem Cells. Stem Cells Int 2024; 2024:1914585. [PMID: 39717868 PMCID: PMC11666318 DOI: 10.1155/2024/1914585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 12/25/2024] Open
Abstract
Background: Burns are a global public health issue and a major cause of disability and death around the world. Stem cells, which are the undifferentiated cells with the potential for indefinite proliferation and multilineage differentiation, have the ability to replace injured skin and facilitate the wound repair process through paracrine mechanisms. In light of this, the present study aims to conduct a bibliometric analysis in order to identify research hotspots of stem cell-related burns and assess global research tendencies. Methods: To achieve this objective, we retrieved scientific publications on burns associated with stem cells covering the period from January 1, 1978, to October 13, 2022, from the Web of Science Core Collection (WoSCC). Bibliometric analyses, including production and collaboration analyses between countries, institutions, authors, and journals, as well as keyword and topic analyses, were conducted using the bibliometrix R package, CiteSpace, and VOSviewer. Results: A total of 1648 burns associated with stem cell documents were published and listed on WOSCC. The most contributive country, institution, journal, and author were the United States, LV Prasad Eye Institute, Burns, and Scheffer C.G. Tseng, respectively. More importantly, combined with historical direct citation network, trend topic analysis, keyword co-occurrence network, and substantial literature analysis, we eventually summarized the research hotspots and frontiers on burns associated stem cell reasearch. Conclusion: The present study obtained deep insight into the developing trends and research hotspots on burns associated with stem cells, which arouses growing concerns and implies increasing clinical implications. The mechanism and therapeutics of epidermal stem cells (ESCs) for burn wounds and the mechanism of mesenchymal stem cells (MSCs) and MSC-derived exosomes for burns wounds are two research hotspots in this field.
Collapse
Affiliation(s)
- Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Pengfei Luo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Sujie Xie
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xinran Ding
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Zhang F, Qi L, Zhao M, Han S, Zhang H, Wang G. Global research landscape on the genetics of congenital heart disease: A bibliometric and visualized analysis via VOSviewer and CiteSpace. Medicine (Baltimore) 2024; 103:e40261. [PMID: 39470501 PMCID: PMC11521071 DOI: 10.1097/md.0000000000040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Genetic factors play a significant role in the development of congenital heart disease (CHD). Many studies on the genetics of CHD have been published worldwide; however, no research has assessed and mapped the global research landscape of these studies. This bibliometric and visualized study aimed to delineate research hotspots and trends in the field of CHD genetics. Scientific papers on the genetics of CHD from January 1, 1950, to December 31, 2023, were obtained by searching the Web of Science Core Collection. The bibliometric metadata of each chosen research paper were extracted, analyzed, and visualized using tools such as Microsoft Excel 2021, VOSviewer, and CiteSpace. The final analysis included 5317 papers discussing the genetics of CHD. The countries and journals that published the highest number of papers were the United States (n = 2118), and American Journal of Medical Genetics Part A (n = 332), respectively. In addition to CHD and genetics, keywords such as tetralogy of Fallot, ventricular septal defect, and atrial septal defect appeared most frequently among 8365 keywords. Eight clusters were formed to categorize the keywords. Keywords such as case-control study, whole genome sequencing, and whole exome sequencing in clusters 6, 7, and 8, respectively, had the latest average publication year among all clusters. To the best of our knowledge, this is the first bibliometric analysis of CHD genetics studies. Tetralogy of Fallot, ventricular septal defect, and atrial septal defect are global research topics. The interactions between environmental and genetic factors in the pathogenesis of CHD, genetic etiology of CHD-associated pulmonary arterial hypertension, and molecular genetics of CHD via high-throughput genomic technology are possible areas of future research on the genetics of CHD.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lei Qi
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Mingxue Zhao
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Shuming Han
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Haoran Zhang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Guangxin Wang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
- Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
4
|
Wu X, Li J, Chai S, Li C, Lu S, Bao S, Yu S, Guo H, He J, Peng Y, Sun H, Wang L. Integrated analysis and validation of ferroptosis-related genes and immune infiltration in acute myocardial infarction. BMC Cardiovasc Disord 2024; 24:123. [PMID: 38402377 PMCID: PMC10893752 DOI: 10.1186/s12872-023-03622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is indeed a significant cause of mortality and morbidity in individuals with coronary heart disease. Ferroptosis, an iron-dependent cell death, is characterized by the accumulation of intracellular lipid peroxides, which is implicated in cardiomyocyte injury. This study aims to identify biomarkers that are indicative of ferroptosis in the context of AMI, and to examine their potential roles in immune infiltration. METHODS Firstly, the GSE59867 dataset was used to identify differentially expressed ferroptosis-related genes (DE-FRGs) in AMI. We then performed gene ontology (GO) and functional enrichment analysis on these DE-FRGs. Secondly, we analyzed the GSE76591 dataset and used bioinformatic methods to build ceRNA networks. Thirdly, we identified hub genes in protein-protein interaction (PPI) network. After obtaining the key DE-FRGs through the junction of hub genes with ceRNA and least absolute shrinkage and selection operator (LASSO). ImmucellAI was applied to estimate the immune cell infiltration in each sample and examine the relationship between key DE-FRGs and 24 immunocyte subsets. The diagnostic performance of these genes was further evaluated using the receiver operating characteristic (ROC) curve analysis. Ultimately, we identified an immune-related ceRNA regulatory axis linked to ferroptosis in AMI. RESULTS Among 56 DE-FRGs identified in AMI, 41 of them were integrated into the construction of competitive endogenous RNA (ceRNA) networks. TLR4 and PIK3CA were identified as key DE-FRGs and PIK3CA was confirmed as a diagnostic biomarker for AMI. Moreover, CD4_native cells, nTreg cells, Th2 cells, Th17 cells, central-memory cells, effector-memory cells, and CD8_T cells had higher infiltrates in AMI samples compared to control samples. In contrast, exhausted cells, iTreg cells, and Tfh cells had lower infiltrates in AMI samples. Spearman analysis confirmed the correlation between 24 immune cells and PIK3CA/TLR4. Ultimately, we constructed an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA. CONCLUSION Our comprehensive analysis has identified PIK3CA as a robust and promising biomarker for this condition. Moreover, we have also identified an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA, which may play a key role in regulating ferroptosis during AMI progression.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shengjie Chai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaguo Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Lu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Suli Bao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuai Yu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Guo
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie He
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huang Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
5
|
Sun N, Xing Y, Jiang J, Wu P, Qing L, Tang J. Knowledge mapping and emerging trends of ferroptosis in ischemia reperfusion injury research: A bibliometric analysis (2013-2022). Heliyon 2023; 9:e20363. [PMID: 37767486 PMCID: PMC10520329 DOI: 10.1016/j.heliyon.2023.e20363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Ischemia/reperfusion (I/R) injury is an inevitable dilemma when previously ischemic multiple organs and tissues are returned to a state of blood flow, with confirming a critical role of ferroptosis in molecular, pathway mechanisms, subcellular structure. Discovering the potential relationship may provide useful approaches for the clinical treatment and prognosis of the pathophysiological status of IRI. Therefore, a comprehensive visualization and scientometric analysis were conducted to systematically summarize and discuss the "ferroptosis in ischemia reperfusion injury" research to demonstrate directions for scholars in this field. METHODS We retrieved all publications focusing on I/R injury and ferroptosis from the Web of Science Core Collection (WoSCC), published from 2013 to October 2022. Next, scientometric analysis of different items was performed using various bibliometrics softwares to explore the annual trends, countries/regions, institutions, journals, authors and their multi-dimensional relationship pointing to current hotspots and future advancement in this field. RESULTS We included a total of 421 English articles in set timespan. The number of publications increased steadily annually. China produced the highest number of publications, followed by the United States. Most publications were from Central South University, followed by Sichuan University and Wuhan University. The most authoritative academic journal was Oxidative Medicine and Cellular Longevity. Cell occupied the first rank of co-cited journal list. Andreas Linkermann and Scott J Dixon may have the highest influence in this intersected field with the highest number of citations and co-cited references respectively. The essential biological reactions such as oxidative stress response, lipid peroxidation metabolism, anti-inflammmatory and pro-inflammatory procedure, and related molecular pathways were knowledge base and current hotspots. Molecules pathways exploration, effective inhibition of I/R injury and promising strategy of improving allografts may become future trends and focuses. CONCLUSIONS Research on ferroptosis in I/R injury had aroused great interest recently. This first bibliometric study comprehensively analyzed the research landscape of ferroptosis and I/R injury, and also provided a reliable reference for related scholars to facilitate further advancement in this field.
Collapse
Affiliation(s)
- Nianzhe Sun
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yixuan Xing
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Panfeng Wu
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Liming Qing
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Juyu Tang
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
6
|
Yan X, Xie Y, Liu H, Huang M, Yang Z, An D, Jiang G. Iron accumulation and lipid peroxidation: implication of ferroptosis in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:161. [PMID: 37468902 DOI: 10.1186/s13098-023-01135-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic cardiomyopathy (DC) is a serious heart disease caused by diabetes. It is unrelated to hypertension and coronary artery disease and can lead to heart insufficiency, heart failure and even death. Currently, the pathogenesis of DC is unclear, and clinical intervention is mainly symptomatic therapy and lacks effective intervention objectives. Iron overdose mediated cell death, also known as ferroptosis, is widely present in the physiological and pathological processes of diabetes and DC. Iron is a key trace element in the human body, regulating the metabolism of glucose and lipids, oxidative stress and inflammation, and other biological processes. Excessive iron accumulation can lead to the imbalance of the antioxidant system in DC and activate and aggravate pathological processes such as excessive autophagy and mitochondrial dysfunction, resulting in a chain reaction and accelerating myocardial and microvascular damage. In-depth understanding of the regulating mechanisms of iron metabolism and ferroptosis in cardiovascular vessels can help improve DC management. Therefore, in this review, we summarize the relationship between ferroptosis and the pathogenesis of DC, as well as potential intervention targets, and discuss and analyze the limitations and future development prospects of these targets.
Collapse
Affiliation(s)
- Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China
| | - Yang Xie
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China.
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China.
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|
7
|
Zhabyeyev P, Sadasivan C, Shah S, Wang F, Oudit GY. Amlodipine rescues advanced iron overload cardiomyopathy in hemojuvelin knockout murine model: Clinical implications. Front Cardiovasc Med 2023; 10:1129349. [PMID: 37153462 PMCID: PMC10160373 DOI: 10.3389/fcvm.2023.1129349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Background Iron overload cardiomyopathy (IOC) is a major co-morbidity of genetic hemochromatosis and secondary iron overload with limited therapeutic options. We aim to investigate mechanisms of rescue action of amlodipine in the murine model of iron overload, characterize changes in human cardiac tissue due to IOC, and compare them to the changes in the animal model of IOC. Methods and results As an animal model, we used male hemojuvelin knockout (HJVKO) mice, which lacked hemojuvelin (a co-receptor protein for hepcidin expression). The mice were fed a high-iron diet from 4 weeks to 1 year of age. As a rescue, iron-fed mice received the Ca2+ channel blocker, amlodipine, from 9 to 12 months. Iron overload resulted in systolic and diastolic dysfunctions and changes in the cardiac tissue similar to the changes in the explanted human heart with IOC. An IOC patient (β-thalassemia) with left-ventricular ejection fraction (LVEF) 25% underwent heart transplantation. The murine model and the explanted heart showed intra-myocyte iron deposition, fibrosis, hypertrophy, oxidative stress, remodeling of Ca2+ cycling proteins, and metabolic kinases typical of heart failure. Single-myocyte contractility and Ca2+ release were diminished in the murine model. The amlodipine-treated group exhibited normalization of cellular function and reversed fibrosis, hypertrophy, oxidative stress, and metabolic remodeling. We also report a clinical case of primary hemochromatosis successfully treated with amlodipine. Conclusions The aged HJVKO murine model on the iron-rich diet reproduced many features of the human case of IOC. The use of amlodipine in the murine model and clinical case reversed IOC remodeling, demonstrating that amlodipine is effective adjuvant therapy for IOC.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- MazankowskiAlberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Chandu Sadasivan
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- MazankowskiAlberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Saumya Shah
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- MazankowskiAlberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Faqi Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gavin Y. Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- MazankowskiAlberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Correspondence: Gavin Y. Oudit
| |
Collapse
|