1
|
Que Y, Shi J, Zhang Z, Sun L, Li H, Qin X, Zeng Z, Yang X, Chen Y, Liu C, Liu C, Sun S, Jin Q, Zhang Y, Li X, Lei M, Yang C, Tian H, Tian J, Chang J. Ion cocktail therapy for myocardial infarction by synergistic regulation of both structural and electrical remodeling. EXPLORATION (BEIJING, CHINA) 2024; 4:20230067. [PMID: 38939858 PMCID: PMC11189571 DOI: 10.1002/exp.20230067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 06/29/2024]
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide. Few drugs hold the ability to depress cardiac electrical and structural remodeling simultaneously after MI, which is crucial for the treatment of MI. The aim of this study is to investigate an effective therapy to improve both electrical and structural remodeling of the heart caused by MI. Here, an "ion cocktail therapy" is proposed to simultaneously reverse cardiac structural and electrical remodeling post-MI in rats and minipigs by applying a unique combination of silicate, strontium (Sr) and copper (Cu) ions due to their specific regulatory effects on the behavior of the key cells involved in MI including angiogenesis of endothelial cells, M2 polarization of macrophages and apoptosis of cardiomyocyte. The results demonstrate that ion cocktail treatment attenuates structural remodeling post-MI by ameliorating infarct size, promoting angiogenesis in both peri-infarct and infarct areas. Meantime, to some extent, ion cocktail treatment reverses the deteriorative electrical remodeling by reducing the incidence rate of early/delayed afterdepolarizations and minimizing the heterogeneity of cardiac electrophysiology. This ion cocktail therapy reveals a new strategy to effectively treat MI with great clinical translation potential due to the high effectiveness and safety of the ion cocktail combination.
Collapse
Affiliation(s)
- Yumei Que
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Jiaxin Shi
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhaowenbin Zhang
- Shanghai Institute of CeramicsChinese Academy of Sciences (CAS)ShanghaiChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of CASBeijingChina
| | - Lu Sun
- Department of Cardiovascular SurgeryPeking University Shenzhen HospitalShenzhenChina
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hairu Li
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xionghai Qin
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhen Zeng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Xiao Yang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Yanxin Chen
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Chong Liu
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chang Liu
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shijie Sun
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qishu Jin
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Yanxin Zhang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Xin Li
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Ming Lei
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Chen Yang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Hai Tian
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiawei Tian
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiang Chang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
- Shanghai Institute of CeramicsChinese Academy of Sciences (CAS)ShanghaiChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of CASBeijingChina
| |
Collapse
|
2
|
崔 佳, 刘 文, 闫 非, 赵 亚, 陈 伟, 罗 春, 张 兴, 李 涛. [Predictive value of cardiac magnetic resonance imaging for adverse left ventricular remodeling after acute ST-segment elevation myocardial infarction]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:553-562. [PMID: 38597447 PMCID: PMC11006702 DOI: 10.12122/j.issn.1673-4254.2024.03.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To assess the value of cardiac magnetic resonance (CMR) imaging for predicting adverse left ventricular remodeling in patients with ST-segment elevation myocardial infarction (STEMI). METHODS We retrospectively analyzed the clinical data and serial CMR (cine and LGE sequences) images of 86 STEMI patients within 1 week and 5 months after percutaneous coronary intervention (PCI), including 25 patients with adverse LV remodeling and 61 without adverse LV remodeling, defined as an increase of left ventricular end-systolic volume (LVESV) over 15% at the second CMR compared to the initial CMR. The CMR images were analyzed for LV volume, infarct characteristics, and global and infarct zone myocardial function. The independent predictors of adverse LV remodeling following STEMI were analyzed using univariate and multivariate Logistic regression methods. RESULTS The initial CMR showed no significant differences in LV volume or LV ejection fraction (LVEF) between the two groups, but the infarct mass and microvascular obstructive (MVO) mass were significantly greater in adverse LV remodeling group (P < 0.05). Myocardial injury and cardiac function of the patients recovered over time in both groups. At the second CMR, the patients with adverse LV remodeling showed a significantly lower LVEF, a larger left ventricular end-systolic volume index (LVESVI) and a greater extent of infarct mass (P < 0.001) with lower global peak strains and strain rates in the radial, circumferential, and longitudinal directions (P < 0.05), infarct zone peak strains in the 3 directions, and infarct zone peak radial and circumferential strain rates (P < 0.05). The independent predictors for adverse LV remodeling following STEMI included the extent of infarct mass (AUC=0.793, 95% CI: 0.693-0.873; cut-off value: 30.67%), radial diastolic peak strain rate (AUC=0.645, 95% CI: 0.534-0.745; cut-off value: 0.58%), and RAAS inhibitor (AUC= 0.699, 95% CI: 0.590-0.793). CONCLUSION The extent of infarct mass, peak radial diastolic strain rate, and RAAS inhibitor are independent predictors of adverse LV remodeling following STEMI.
Collapse
Affiliation(s)
- 佳宁 崔
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
- 首都医科大学附属北京积水潭医院放射科,北京 100035Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - 文佳 刘
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| | - 非 闫
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| | - 亚男 赵
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| | - 伟杰 陈
- 中国人民解放军联勤保障部队第九八五医院放射科,山西 太原 030001Department of Radiology, 985th Hospital of Joint Logistics Support Force, Taiyuan 030001, China
| | - 春材 罗
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| | - 兴华 张
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| | - 涛 李
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| |
Collapse
|
3
|
Pambianchi G, Marchitelli L, Cundari G, Ruoli L, Conia L, Catalano C, Galea N. Takotsubo syndrome: left atrial and ventricular myocardial strain impairment in the subacute and convalescent phases assessed by CMR. Eur Radiol Exp 2024; 8:34. [PMID: 38413432 PMCID: PMC10899127 DOI: 10.1186/s41747-024-00423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND We investigated the differences in impairment of left ventricle (LV) and left atrium (LA) contractile dysfunction between subacute and convalescent takotsubo syndrome (TTS), using myocardial strain analysis by cardiac magnetic resonance (CMR) feature-tracking technique. METHODS We retrospectively selected 50 patients with TTS clinical-radiological diagnosis who underwent CMR within 30 days since symptoms onset: 19 studied during the early subacute phase (sTTS, ≤ 7 days) and 31 during the convalescence (cTTS, 8-30 days). We measured the following: LV global longitudinal, circumferential, and radial strain (lvGLS, lvGCS, lvGRS) and strain rate (SR) and LA reservoir (laS_r), conduit (laS_cd), and booster pump strain (laS_bp) and strain rate (laSR_r, laSR_cd, laSR_bp). Patients were compared with 30 age- and sex-matched controls. RESULTS All patients were women (mean age 63 years). TTS patients showed altered LV- and LA-strain features, compared to controls. sTTS was associated with increased laS_bp (12.7% versus 9.8%) and reduced lvEF (47.4% versus 54.8%), lvGLS (-12.2% versus 14.6%), and laS_cd (7.0% versus 9.5%) compared to cTTS (p ≤ 0.029). The interval between symptoms onset and CMR was correlated with laS_bp (r = -0.49) and lvGLS (r = 0.47) (p = 0.001 for both). At receiver operating characteristics analysis, laS_bp was the best discriminator between sTTS and cTTS (area under the curve [AUC] 0.815), followed by lvGLS (AUC 0.670). CONCLUSIONS LA dysfunction persists during the subacute and convalescence of TTS. laS_bp increases in subacute phase with progressive decrease during convalescence, representing a compensatory mechanism of LV dysfunction and thus a useful index of functional recovery. RELEVANCE STATEMENT Atrial strain has the potential to enhance the delineation of cardiac injury and functional impairment in TTS patients, assisting in the identification of individuals at higher risk and facilitating the implementation of more targeted and personalized medical therapies. KEY POINTS • In TTS, after ventricular recovery, atrial dysfunction persists assessable with CMR feature tracking. • Quantitative assessment of atrial strain discriminates atrial functions: reservoir, conduit, and booster pump. • Atrial booster pump changes after acute TTS, regardless of ventricular function. • Atrial strain may serve as a temporal marker in TTS.
Collapse
Affiliation(s)
- Giacomo Pambianchi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome - Policlinico Umberto I Hospital, Viale Regina Elena 324, Rome, 00183, Italy
| | - Livia Marchitelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome - Policlinico Umberto I Hospital, Viale Regina Elena 324, Rome, 00183, Italy
| | - Giulia Cundari
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome - Policlinico Umberto I Hospital, Viale Regina Elena 324, Rome, 00183, Italy
| | - Letizia Ruoli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome - Policlinico Umberto I Hospital, Viale Regina Elena 324, Rome, 00183, Italy
| | - Luca Conia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome - Policlinico Umberto I Hospital, Viale Regina Elena 324, Rome, 00183, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome - Policlinico Umberto I Hospital, Viale Regina Elena 324, Rome, 00183, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome - Policlinico Umberto I Hospital, Viale Regina Elena 324, Rome, 00183, Italy.
| |
Collapse
|
4
|
Calvieri C, Riva A, Sturla F, Dominici L, Conia L, Gaudio C, Miraldi F, Secchi F, Galea N. Left Ventricular Adverse Remodeling in Ischemic Heart Disease: Emerging Cardiac Magnetic Resonance Imaging Biomarkers. J Clin Med 2023; 12:jcm12010334. [PMID: 36615133 PMCID: PMC9820966 DOI: 10.3390/jcm12010334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Post-ischemic left ventricular (LV) remodeling is a biologically complex process involving myocardial structure, LV shape, and function, beginning early after myocardial infarction (MI) and lasting until 1 year. Adverse remodeling is a post-MI maladaptive process that has been associated with long-term poor clinical outcomes. Cardiac Magnetic Resonance (CMR) is the best tool to define adverse remodeling because of its ability to accurately measure LV end-diastolic and end-systolic volumes and their variation over time and to characterize the underlying myocardial changes. Therefore, CMR is the gold standard method to assess in vivo myocardial infarction extension and to detect the presence of microvascular obstruction and intramyocardial hemorrhage, both associated with adverse remodeling. In recent times, new CMR quantitative biomarkers emerged as predictive of post-ischemic adverse remodeling, such as T1 mapping, myocardial strain, and 4D flow. Additionally, CMR T1 mapping imaging may depict infarcted tissue and assess diffuse myocardial fibrosis by using surrogate markers such as extracellular volume fraction, which may predict functional recovery or risk stratification of remodeling. Finally, there is emerging evidence supporting the utility of intracavitary blood flow kinetic energy and hemodynamic features assessed by the 4D flow CMR technique as early predictors of remodeling.
Collapse
Affiliation(s)
- Camilla Calvieri
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00100 Rome, Italy
- Correspondence:
| | - Alessandra Riva
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20129 Milan, Italy
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Francesco Sturla
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20129 Milan, Italy
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Lorenzo Dominici
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Luca Conia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Carlo Gaudio
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Francesco Secchi
- Unit of Radiology, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20129 Milan, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy
| |
Collapse
|
5
|
Dong Z, Yang L, Jiao J, Jiang Y, Li H, Yin G, Yang P, Sun L. Aspirin in combination with gastrodin protects cardiac function and mitigates gastric mucosal injury in response to myocardial ischemia/reperfusion. Front Pharmacol 2022; 13:995102. [PMID: 36238560 PMCID: PMC9553090 DOI: 10.3389/fphar.2022.995102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury after percutaneous coronary intervention (PCI) is common in acute myocardial infarction. Aspirin is commonly prescribed as anti-thrombotic therapy with coronary heart disease (CHD). However, long-term use of aspirin causes severe gastric mucosal damage. Gastrodin is a Chinese natural medicine with anti-inflammatory and anti-oxidative properties. In this study, we investigated the effects of combined therapy with aspirin and gastrodin on the myocardial and gastric mucosal injury in response to myocardial I/R injury and underlying mechanisms using the Sprague-Dawley (SD) rat model. Our results demonstrated that myocardial I/R caused significant cardiac dysfunction and gastric mucosal damage. Administration of aspirin led to significantly reduce myocardial infarction size and myocardial enzyme release, as well as significantly improved cardiac function through exerting anti-inflammatory effects. However, aspirin exacerbated gastric mucosal damage by increasing the levels of inflammatory mediators and endothelin (ET) while reducing prostaglandin E2 (PGE2) levels. The combined treatment with aspirin and gastrodin not only significantly protected gastric mucosa by normalizing the expression levels of the inflammatory factors, ET and PGE2, but also significantly reduced myocardial infarction size and improved cardiac function by inhibiting inflammation in response to I/R. The combination therapy also dramatically down-regulated the levels of pyroptosis-related proteins in the myocardium and gastric mucosa. The combination therapy showed obviously reduced level of thromboxane B2 (TXB2), which was simultaneously accompanied with increased levels of the tissue plasminogen activator (t-PA). This suggested that gastrodin did not inhibit the anti-thrombotic function of aspirin. Accordingly, aspirin in combination with gasrtodin protected the structural and functional integrity of the heart and stomach by suppressing pyroptosis and inflammation. Therefore, combination of aspirin and gastrodin is a promising treatment for cardiac dysfunction and gastric mucosa injury after myocardial I/R.
Collapse
Affiliation(s)
- Zhiwu Dong
- Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Lin Yang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jianlin Jiao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Yongliang Jiang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Hao Li
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Gaosheng Yin
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Ping Yang
- Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
- *Correspondence: Ping Yang, ; Lin Sun,
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
- *Correspondence: Ping Yang, ; Lin Sun,
| |
Collapse
|