1
|
Liu S, Qiu F, Gu R, Xu E. Functional Involvement of Signal Transducers and Activators of Transcription in the Pathogenesis of Influenza A Virus. Int J Mol Sci 2024; 25:13589. [PMID: 39769350 PMCID: PMC11677356 DOI: 10.3390/ijms252413589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Signal transducers and activators of transcription (STATs) function both as signal transducers and transcription regulators. STAT proteins are involved in the signaling pathways of cytokines and growth factors; thus, they participate in various life activities and play especially critical roles in antiviral immunity. Convincing evidence suggests that STATs can establish innate immune status through multiple mechanisms, efficiently eliminating pathogens. STAT1 and STAT2 can activate the antiviral status by regulating the interferon (IFN) signal. In turn, suppressor of cytokine signaling-1 (SOCS1) and SOCS3 can modulate the activation of STATs and suppress the excessive antiviral immune response. STAT3 not only regulates the IFN signal, but also transduces Interleukin-6 (IL-6) to stimulate the host antiviral response. The function of STAT4 and STAT5 is related to CD4+ T helper (Th) cells, and the specific mechanism of STAT5 remains to be studied. STAT6 mainly exerts antiviral effects by mediating IL-4 and IL-13 signaling. Here, we reviewed the recent findings regarding the critical roles of STATs in the interactions between the host and viral infection, especially influenza A virus (IAV) infection. We also discuss the molecular mechanisms underlying their functions in antiviral responses.
Collapse
Affiliation(s)
- Shasha Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Qiu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongrong Gu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Erying Xu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Banerjee P, Chau K, Kotla S, Davis EL, Turcios EB, Li S, Pengzhi Z, Wang G, Kolluru GK, Jain A, Cooke JP, Abe J, Le NT. A Potential Role for MAGI-1 in the Bi-Directional Relationship Between Major Depressive Disorder and Cardiovascular Disease. Curr Atheroscler Rep 2024; 26:463-483. [PMID: 38958925 PMCID: PMC12124319 DOI: 10.1007/s11883-024-01223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Major Depressive Disorder (MDD) is characterized by persistent symptoms such as fatigue, loss of interest in activities, feelings of sadness and worthlessness. MDD often coexist with cardiovascular disease (CVD), yet the precise link between these conditions remains unclear. This review explores factors underlying the development of MDD and CVD, including genetic, epigenetic, platelet activation, inflammation, hypothalamic-pituitary-adrenal (HPA) axis activation, endothelial cell (EC) dysfunction, and blood-brain barrier (BBB) disruption. RECENT FINDINGS Single nucleotide polymorphisms (SNPs) in the membrane-associated guanylate kinase WW and PDZ domain-containing protein 1 (MAGI-1) are associated with neuroticism and psychiatric disorders including MDD. SNPs in MAGI-1 are also linked to chronic inflammatory disorders such as spontaneous glomerulosclerosis, celiac disease, ulcerative colitis, and Crohn's disease. Increased MAGI-1 expression has been observed in colonic epithelial samples from Crohn's disease and ulcerative colitis patients. MAGI-1 also plays a role in regulating EC activation and atherogenesis in mice and is essential for Influenza A virus (IAV) infection, endoplasmic reticulum stress-induced EC apoptosis, and thrombin-induced EC permeability. Despite being understudied in human disease; evidence suggests that MAGI-1 may play a role in linking CVD and MDD. Therefore, further investigation of MAG-1 could be warranted to elucidate its potential involvement in these conditions.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eleanor L Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Estefani Berrios Turcios
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Shengyu Li
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Zhang Pengzhi
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Abhishek Jain
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
3
|
Schughart K, Smith AM, Tsalik EL, Threlkeld SC, Sellers S, Fischer WA, Schreiber J, Lücke E, Cornberg M, Debarry J, Woods CW, McClain MT, Heise M. Host response to influenza infections in human blood: association of influenza severity with host genetics and transcriptomic response. Front Immunol 2024; 15:1385362. [PMID: 39192977 PMCID: PMC11347429 DOI: 10.3389/fimmu.2024.1385362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Influenza virus infections are a major global health problem. Influenza can result in mild/moderate disease or progress to more severe disease, leading to high morbidity and mortality. Severity is thought to be primarily driven by immunopathology, but predicting which individuals are at a higher risk of being hospitalized warrants investigation into host genetics and the molecular signatures of the host response during influenza infections. Methods Here, we performed transcriptome and genotype analysis in healthy controls and patients exhibiting mild/moderate or severe influenza (ICU patients). A unique aspect of our study was the genotyping of all participants, which allowed us to assign ethnicities based on genetic variation and assess whether the variation was correlated with expression levels. Results We identified 169 differentially expressed genes and related molecular pathways between patients in the ICU and those who were not in the ICU. The transcriptome/genotype association analysis identified 871 genes associated to a genetic variant and 39 genes distinct between African-Americans and Caucasians. We also investigated the effects of age and sex and found only a few discernible gene effects in our cohort. Discussion Together, our results highlight select risk factors that may contribute to an increased risk of ICU admission for influenza-infected patients. This should help to develop better diagnostic tools based on molecular signatures, in addition to a better understanding of the biological processes in the host response to influenza.
Collapse
Affiliation(s)
- Klaus Schughart
- Institute of Virology Münster, University of Münster, Münster, Germany
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amber M. Smith
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ephraim L. Tsalik
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | | | - Subhashini Sellers
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William A. Fischer
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jens Schreiber
- Clinic of Pneumology, Otto-von-Guerike University, Magdeburg, Germany
| | - Eva Lücke
- Clinic of Pneumology, Otto-von-Guerike University, Magdeburg, Germany
| | - Markus Cornberg
- Centre for Individualised Infection Medicine (CiiM), a Joint Initiative of the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jennifer Debarry
- Centre for Individualised Infection Medicine (CiiM), a Joint Initiative of the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Christopher W. Woods
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Center for Infectious Disease Diagnostics and Innovation, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Micah T. McClain
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Center for Infectious Disease Diagnostics and Innovation, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Mark Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Gawrysiak M, Szewczyk R, Kobierecki M, Szymański M, Gajewski A, Gulbas I, Michlewska S, Chałubiński M. Human lung vascular endothelium may limit infection with HRV16 via IFN-β-dependent mechanisms. APMIS 2024; 132:112-121. [PMID: 37971173 DOI: 10.1111/apm.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Human rhinovirus 16 (HRV16) may induce inflammatory and antiviral responses in the human lung vascular endothelium (ECs) and impair its barrier functions after infection. However, ECs may regain barrier and metabolic functions. Mechanisms of limitation of HRV16 infection in the lung vascular endothelium are unknown. Human lung vascular endothelium (HMVEC-L) was infected with HRV16. IFN-β, OAS-1, and PKR expression was assessed by real-time PCR, flow cytometry, and confocal microscope. To prove the significance of IFN-β in the limitation of HRV16 replication, HMVEC-Ls were preincubated with anti-IFN-β Abs. To prove the involvement of OAS-1 and PKR in the IFN-dependent limitation of HRV16 replication, HMVEC-Ls were transfected with respective siRNA. HRV16 stimulated IFN-β production and activated intracellular mechanisms of antiviral immunity based on OAS-1 and PKR activation. Blocking of IFN-β contributed to the inhibition of intracellular mechanisms of antiviral immunity (OAS-1, PKR) and boosted replication of HRV16. Effective OAS-1 silencing by siRNA caused the increase of HRV16 copy numbers after HRV16 infection. siRNA upregulated the other genes related to the antiviral response. The infected lung vascular endothelium may limit the HRV16 infection. This limitation may be associated with the induction of IFN-β-dependent intracellular mechanisms based on OAS-1 and PKR activity.
Collapse
Affiliation(s)
- Mateusz Gawrysiak
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| | - Robert Szewczyk
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| | - Mateusz Kobierecki
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| | - Michał Szymański
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| | - Izabela Gulbas
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|