1
|
Liu Q, Guo Y, Peng B, Fan D, Wu J, Wang J, Wang R, Liu JM, Wu J, Wang S, Zhao Y. Protein-enriched intermittent meal replacement combined with moderate-intensity training for weight loss and body composition in overweight women. Sci Rep 2025; 15:12485. [PMID: 40216877 PMCID: PMC11992100 DOI: 10.1038/s41598-025-96486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
The global rise in overweight and obesity has been exacerbated by sedentary lifestyles and suboptimal dietary habits. Traditional weight loss methods often struggle with adherence due to restrictive diets and metabolic adaptations. Intermittent meal replacement (IMR), incorporating formulated protein-enriched nutritional shakes, has emerged as a potential strategy for weight management. However, its combined effects with moderate-intensity continuous training (MICT) remain underexplored. This study aimed to evaluate the impact of a weight loss method incorporating formulated protein-enriched nutritional shake IMR in conjunction with MICT workout for overweight female adults. This 8-week parallel randomized controlled trial investigated the impact of protein-enriched IMR combined with MICT on weight loss and body composition in overweight female adults. Participants were randomly assigned to either the MICT group or MICT + IMR group. Body composition, hematological, and urinary biomarkers were assessed pre- and post-intervention. The MICT + IMR Group achieved a greater reduction in body weight (-3.70 kg vs. -1.17 kg, p < 0.001) and body fat mass (-2.25 kg vs. -1.19 kg, p < 0.001) compared to the MICT group. Additionally, fasting blood glucose and insulin levels significantly improved in the MICT + IMR Group, suggesting enhanced metabolic regulation. IMR, when combined with MICT, is a viable strategy for short-term weight loss in overweight women, offering improved fat reduction and metabolic benefits compared to exercise alone.Trial registration: Chinese Clinical Trail Registry, ChiCTR2300076750. Registered 17 October 2023, https://www.chictr.org.cn/bin/project/edit?pid=197611 .
Collapse
Affiliation(s)
- Qisijing Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yi Guo
- Shanghai M-Action Health Technology Co. Ltd, Shanghai, 201210, China
| | - Bo Peng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ruican Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jian Wu
- Shanghai M-Action Health Technology Co. Ltd, Shanghai, 201210, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Yanrong Zhao
- Shanghai M-Action Health Technology Co. Ltd, Shanghai, 201210, China.
| |
Collapse
|
2
|
Zhong L, Hou X, Tian Y, Fu X. Exercise and dietary interventions in the management of diabetic cardiomyopathy: mechanisms and implications. Cardiovasc Diabetol 2025; 24:159. [PMID: 40205621 PMCID: PMC11983742 DOI: 10.1186/s12933-025-02702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/22/2025] [Indexed: 04/11/2025] Open
Abstract
The global prevalence of diabetes is rapidly increasing, significantly raising the risk of various cardiovascular diseases. Among these, diabetic cardiomyopathy (DCM) is a distinct and critical complication characterized by ventricular hypertrophy and impaired myocardial contractility, ultimately progressing to heart failure and making it a leading cause of mortality among diabetic patients. Despite advances in pharmacological therapies, the effectiveness of managing cardiac dysfunction in DCM remains challenging. Consequently, exploring additional therapeutic strategies for the prevention and treatment of DCM is urgently needed. Beyond pharmacological approaches, lifestyle modifications, particularly exercise and dietary interventions, play a fundamental role in managing DCM due to their significant cardiovascular benefits in diabetic patients. This review synthesizes recent advancements in the field, elucidating the underlying mechanisms through which exercise and dietary interventions influence DCM pathophysiology. By integrating these strategies, we aim to facilitate the development of personalized exercise and dietary regimens that effectively mitigate or prevent DCM progression.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery, Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Chen H, Guo L. Exercise in Diabetic Cardiomyopathy: Its Protective Effects and Molecular Mechanism. Int J Mol Sci 2025; 26:1465. [PMID: 40003929 PMCID: PMC11855851 DOI: 10.3390/ijms26041465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the cardiovascular complications of diabetes, characterized by the development of ventricular systolic and diastolic dysfunction due to factors such as inflammation, oxidative stress, fibrosis, and disordered glucose metabolism. As a sustainable therapeutic approach, exercise has been reported in numerous studies to regulate blood glucose and improve abnormal energy metabolism through various mechanisms, thereby ameliorating left ventricular diastolic dysfunction and mitigating DCM. This review summarizes the positive impacts of exercise on DCM and explores its underlying molecular mechanisms, providing new insights and paving the way for the development of tailored exercise programs for the prophylaxis and therapy of DCM.
Collapse
Affiliation(s)
- Humin Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
4
|
Bai Z, Zhou D, Tao K, Lin F, Wang H, Sun H, Liu R, Li Z. The Role of MicroRNA-206 in the Regulation of Diabetic Wound Healing via Hypoxia-Inducible Factor 1-Alpha. Biochem Genet 2025; 63:393-410. [PMID: 38446322 PMCID: PMC11832568 DOI: 10.1007/s10528-024-10759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Successful wound healing in diabetic patients is hindered by dysregulated miRNA expression. This study aimed to investigate the abnormal expression of miRNAs in diabetic wound healing and the potential therapeutic role of modulating the miR-206/HIF-1α pathway. MicroRNA assays were used to identify differentially expressed miRNAs in diabetic wound sites and adjacent areas. In vitro models and a rat diabetic model were established to evaluate the effects of miR-206 on HIF-1α regulation and wound healing. The study revealed differential expression of miR-206 in diabetic wound tissues, its interaction with HIF-1α, and the inhibitory effect of miR-206 on cell growth under high glucose conditions. Modulating the miR-206/HIF-1α pathway using miR-206 antagomir promoted HIF-1α, CD34, and VEGF expression, ultimately enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Zeming Bai
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Dapeng Zhou
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China.
| | - Kai Tao
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China.
| | - Feng Lin
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Hongyi Wang
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Haiwei Sun
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Ruidi Liu
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Zhe Li
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| |
Collapse
|
5
|
Moharamzadeh S, Kashef M, Salehpour M, Torabi M, Vesali S, Samsonchi Z, Hajizadeh-Saffar E. Effects of exercise intensity and diet on cardiac tissue structure and FGF21/β-Klotho signaling in type 2 diabetic mice: a comparative study of HFD and HFD + STZ induced type 2 diabetes models in mice. Diabetol Metab Syndr 2025; 17:4. [PMID: 39757236 DOI: 10.1186/s13098-024-01541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Structural heart disease is one of the leading causes of death in people with type 2 diabetes (T2D), which is not known to have an effect on exercise training. The aim of this study was to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on heart tissue structure, the serum level of FGF21 and the heart tissue level of β-Klotho, an FGF21 coreceptor, in HFD and HFD + STZ-induced diabetic mice. METHODS Thirty-six male C57BL/6J mice were divided into high-fat diet (HFD) and normal chow diet (ND) groups. After 20 weeks of diet, the HFD mice were divided into HFD and HFD + STZ groups, and the latter group was injected with STZ. Then, the mice in the ND, HFD and HFD + STZ groups were divided into three subgroups of control (C), HIIT and MICT, and mice were placed in one of nine groups ND-C, ND-HIIT, ND-MICT, HFD-C, HFD-HIIT, HFD-MICT, HFD + STZ-C, HFD + STZ-HIIT, and HFD + STZ-MICT. The mice in the exercise training (ET) groups were run on a treadmill for eight weeks. Finally, the tissue and serum samples were collected and analyzed by two-way ANOVA. RESULTS Statistical analyses showed that the main effect of diabetes inducing model (DIM) was significant for all variables (p < 0.05), except vascular density (p = 0.055); the main effect of ET type on fasting blood glucose and FGF21 was significant (p < 0.001); and the interaction was significant for fasting blood glucose, heart weight and FGF21 (p < 0.001). Post hoc and subgroup analysis showed a superior effect of MICT over HIIT in decreasing fasting blood glucose and serum level of FGF21 (p < 0.001). Additionally, the results of the myocardial tissue qualitative analyses differed between the diabetic mouse models and the ET groups. CONCLUSIONS In a mouse model, type 2 diabetes can negatively affect heart tissue structure and FGF21 signaling in cardiac tissue, and both HIIT and MICT can prevent this effect. However, MICT likely more effective that HIIT in reducing circulating FGF21.
Collapse
Affiliation(s)
- Sevda Moharamzadeh
- Department of Exercise Physiology, Faculty of Sport Science, Shahid Rajaei Teacher Training University, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Basic and Population-Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Majid Kashef
- Department of Exercise Physiology, Faculty of Sport Science, Shahid Rajaei Teacher Training University, Tehran, Iran.
| | - Mojtaba Salehpour
- Department of Exercise Physiology, Faculty of Sport Science, Shahid Rajaei Teacher Training University, Tehran, Iran
| | - Meysam Torabi
- Department of Exercise Physiology, Faculty of Sport Science, Guilan University, Rasht, Iran
- Department of Basic and Population-Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Samira Vesali
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zakieh Samsonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Gao Y, Ling Y, Wu H, Zhang P, Zhou J, Gu H, Yang J, Zhou Y, Zhong Z, Chi J. Swimming training attenuates doxorubicin induced cardiomyopathy by targeting the mir-17-3p/KEAP1/NRF2 axis. Biochem Biophys Res Commun 2024; 739:150568. [PMID: 39178797 DOI: 10.1016/j.bbrc.2024.150568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Doxorubicin (DOX), as a first-line anticancer drug, is widely used in the treatment of various cancers. However, its clinical application is restricted due to its severe cardiac toxicity. Previous studies have indicated exercise training can alleviate the DOX-induced cardiotoxicity (DIC), but the underlying mechanism remains unclear. Our research has discovered, post-exercise, an elevated expression level of mir-17-3p, but in DIC its level decreases. Therefore, we further studied the effect of exercise mir-17-3p axis on DIC. In vivo, we simulated DIC mouse model, followed by an intervention using swimming and adenovirus to inhibit mir-17-3p. We found that inhibition of mir-17-3p can weaken the protection of exercise against DIC, presenting as weakened heart function. Besides, the levels of Malondialdehyde and Fe2+ in the cardiac tissue increased, along with diminished glutathione peroxidase 4 and Solute Carrier Family 7 Member 11 levels, and a decline in the concentration of glutathione, causing an increase in ferroptosis. Moreover, in vitro, we used dual-luciferase assay to confirm that Kelch Like ECH Associated Protein 1 (KEAP1) can be a target gene of mir-17-3p. We used Keap1/NFE2 Like BZIP Transcription Factor 2 (NRF2) inhibitor brusatol and Stimulator of Interferon Response CGAMP Interactor 1 (STING) agonist SR-717 to verify the mir-17-3p/KEAP1 axis can affect the Cyclic GMP-AMP Synthase (CGAS)/STING pathway, leading to further ferroptosis in DIC. This manifested as a reduction in ferroptosis. In summary, our research suggests swimming training enhances the levels of mir-17-3p, thereby activating the KEAP1/NRF2 pathway, and weakening the CGAS/STING pathway, improving ferroptosis in DIC.
Collapse
Affiliation(s)
- Yefei Gao
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yan Ling
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Haowei Wu
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Peipei Zhang
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Jiedong Zhou
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Haodi Gu
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Juntao Yang
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yan Zhou
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Zuoquan Zhong
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Jufang Chi
- Department of Cardiology, Zhuji People's Hospital, Zhejiang, China.
| |
Collapse
|
7
|
Jiang Z, Luo X, Han C, Qin YY, Pan SY, Qin ZH, Bao J, Luo L. NAD + homeostasis and its role in exercise adaptation: A comprehensive review. Free Radic Biol Med 2024; 225:346-358. [PMID: 39326681 DOI: 10.1016/j.freeradbiomed.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a crucial coenzyme involved in catalyzing cellular redox reactions and serving as a substrate for NAD+-dependent enzymes. It plays a vital role in maintaining tissue homeostasis and promoting healthy aging. Exercise, a well-established and cost-effective method for enhancing health, can influence various pathways related to NAD+ metabolism. Strategies such as supplementing NAD+ precursors, modulating NAD+ synthesis enzymes, or inhibiting enzymes that consume NAD+ can help restore NAD+ balance and improve exercise performance. Various overlapping signaling pathways are known to play a crucial role in the beneficial effects of both NAD+ and exercise on enhancing health and slowing aging process. Studies indicate that a combined strategy of exercise and NAD+ supplementation could synergistically enhance athletic capacity. This review provides an overview of current research on the interactions between exercise and the NAD+ network, underscoring the significance of NAD+ homeostasis in exercise performance. It also offers insights into enhancing exercise capacity and improving aging-related diseases through the optimal use of exercise interventions and NAD+ supplementation methods.
Collapse
Affiliation(s)
- Zhi Jiang
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, 518048, China
| | - Chong Han
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Yuan-Yuan Qin
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 215009, China
| | - Shan-Yao Pan
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Zheng-Hong Qin
- Institute of Health Technology, Suzhou Gaobo Vocational College, Suzhou High-Technology District Science Town, 5 Qingshan Road, Suzhou, 215163, China
| | - Jie Bao
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China.
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
8
|
Wang Z, Wang J. The effects of high-intensity interval training versus moderate-intensity continuous training on athletes' aerobic endurance performance parameters. Eur J Appl Physiol 2024; 124:2235-2249. [PMID: 38904772 DOI: 10.1007/s00421-024-05532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE To systematically evaluate and meta-analyze the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on athletes of aerobic endurance performance parameters. METHODS PubMed, Web of Science, EBSCO, Embase, and Cochrane databases were searched. The assessment of quality was conducted employing The Cochrane Risk of Bias Assessment Tool, while heterogeneity examination and subgroup analysis were performed. Moreover, regression and sensitivity analyses were executed. RESULTS There was no significant difference between the effects of HIIT and MICT on the enhancement of athletes' running economy (RE) (P > 0.05); 1-3 weeks and 4-9 weeks of HIIT were more effective in improving athletes' maximum oxygen uptake (VO2max) (P < 0.05), and 10 weeks and above were not significant (P > 0.05); 1-3 weeks of HIIT was more effective in improving athletes' anaerobic threshold (AT) (P < 0.05), and 4-10 weeks was not significant (P > 0.05); 3 weeks of high-intensity interval training (HIIT) did not significantly enhance athletes' minute ventilation (VE) (P > 0.05), whereas a duration of 6-10 weeks yielded superior results (P < 0.05); 8 weeks of moderate-intensity continuous training (MICT) did not significantly enhance athletes' hemoglobin (Hb) level (P > 0.05), whereas a duration of 2-3 weeks yielded superior results (P < 0.05). CONCLUSIONS (1) HIIT and MICT have similar effects on enhancing athletes' RE. (2) 6-9 weeks' HIIT was more effective in improving athletes' VO2max and VE, and 3 weeks' HIIT was more effective in improving athletes' AT. (3) Within 3 weeks, MICT was more effective in improving the Hb level of athletes. REGISTRATION NUMBER ON PROSPERO CRD42024499039.
Collapse
Affiliation(s)
- Ziyi Wang
- College of Human Sport Science, Beijing Sport University, No.48, Shangdi Rd, Beijing, 100084, China
| | - Jun Wang
- College of Human Sport Science, Beijing Sport University, No.48, Shangdi Rd, Beijing, 100084, China.
| |
Collapse
|
9
|
Lin H, Chu J, Yuan D, Wang K, Chen F, Liu X. MiR-206 may regulate mitochondrial ROS contribute to the progression of Myocardial infarction via TREM1. BMC Cardiovasc Disord 2023; 23:470. [PMID: 37730550 PMCID: PMC10512505 DOI: 10.1186/s12872-023-03481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Myocardial infarction (MI) is a leading cause of mortality. To better understand its molecular and cellular mechanisms, we used bioinformatic tools and molecular experiments to explore the pathogenesis and prognostic markers. Differential gene expression analysis was conducted using GSE60993 and GSE66360 datasets. Hub genes were identified through pathway enrichment analysis and PPI network construction, and four hub genes (AQP9, MMP9, FPR1, and TREM1) were evaluated for their predictive performance using AUC and qRT-PCR. miR-206 was identified as a potential regulator of TREM1. Finally, miR-206 was found to induce EC senescence and ER stress through upregulating mitochondrial ROS levels via TREM1. These findings may contribute to understanding the pathogenesis of MI and identifying potential prognostic markers.
Collapse
Affiliation(s)
- Hao Lin
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Jiapeng Chu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Deqiang Yuan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Kangwei Wang
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China.
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China.
| |
Collapse
|
10
|
The high-intensity interval training mitigates the cardiac remodeling in spontaneously hypertensive rats. Life Sci 2022; 308:120959. [PMID: 36108768 DOI: 10.1016/j.lfs.2022.120959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
AIM To evaluate the influence of high-intensity interval training (HIIT) on cardiac structural and functional characteristics and myocardial mitogen-activated protein kinase (MAPK) signaling in hypertensive rats. METHODS Male rats (12 months old) were divided into three groups: Wistar Kyoto rats (WKY, n = 8); sedentary spontaneously hypertensive rats (SED-SHR, n = 10), and trained spontaneously hypertensive rats (HIIT-SHR, n = 10). Systolic blood pressure (SBP), functional capacity, echocardiography, isolated papillary muscle, and gene expression of MAPK gene-encoding proteins associated with Elk1, cJun, ATF2, MEF2 were analyzed. KEY FINDINGS HIIT decreased SBP and increased functional capacity, left ventricular diastolic diameter, posterior wall thickness-left ventricle, relative wall thickness-left ventricle, and resting tension of the papillary muscle. In hypertensive rats, we observed a decrease in the gene-encoding ATF2 protein; this decrease was reversed by HIIT. SIGNIFICANCE The influence of HIIT in the SHR model in the compensated hypertension phase generated an increase in cardiac hypertrophy, attenuated myocardial diastolic dysfunction, lowered blood pressure, improved functional capacity, and reversed the alteration in gene-encoding ATF2 protein.
Collapse
|