1
|
Wattchow NE, Pullen BJ, Indraratna AD, Nankivell V, Everest-Dass A, Psaltis PJ, Kolarich D, Nicholls SJ, Packer NH, Bursill CA. The emerging role of glycans and the importance of sialylation in cardiovascular disease. Atherosclerosis 2025; 403:119172. [PMID: 40138819 DOI: 10.1016/j.atherosclerosis.2025.119172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/13/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
Glycosylation is the process by which glycans (i.e. 'sugars') are enzymatically attached to proteins or lipids to form glycoconjugates. Growing evidence points to glycosylation playing a central role in atherosclerosis. Glycosylation occurs in all human cells and post-translationally modifies many signalling molecules that regulate cardiovascular disease, affecting their binding and function. Glycoconjugates are present in abundance on the vascular endothelium and on circulating lipoproteins, both of which have well-established roles in atherosclerotic plaque development. Sialic acid is a major regulator of glycan function and therefore the process of sialylation, in which sialic acid is added to glycans, is likely to be entwined in any regulation of atherosclerosis. Glycans and sialylation regulators have the potential to present as new biomarkers that predict atherosclerotic disease or as targets for pharmacological intervention, as well as providing insights into novel cardiovascular mechanisms. Moreover, the asialoglycoprotein receptor 1 (ASGR1), a glycan receptor, is emerging as an exciting new regulator of lipid metabolism and coronary artery disease. This review summarises the latest advances in the growing body of evidence that supports an important role for glycosylation and sialylation in the regulation of atherosclerosis.
Collapse
Affiliation(s)
- Naomi E Wattchow
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Benjamin J Pullen
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, 5000, Australia; Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Australia
| | - Anuk D Indraratna
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Victoria Nankivell
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia; Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Australia
| | - Arun Everest-Dass
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Daniel Kolarich
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Stephen J Nicholls
- Victorian Heart Institute, Monash University, Clayton, Victoria, 3168, Australia
| | - Nicolle H Packer
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia; School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, 2109, Australia; Australian Research Council (ARC) Centre of Excellence for Synthetic Biology, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia; Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Australia.
| |
Collapse
|
2
|
Takarada T, Fujinaka R, Shimada M, Fukuda M, Yamada T, Tanaka M. Effect of N-glycosylation on secretion, degradation and lipoprotein distribution of human serum amyloid A4. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159588. [PMID: 39672228 DOI: 10.1016/j.bbalip.2024.159588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Serum amyloid A (SAA) is a family of apolipoproteins predominantly synthesized and secreted by the liver. Human SAA4 is constitutively expressed and contains an N-glycosylation site that is not present in other SAA subtypes. SAA4 proteins are not fully glycosylated, resulting in the presence of both glycosylated and non-glycosylated forms in human plasma. The efficiency of N-glycosylation in SAA4 is known to be influenced by some reasons such as genetic polymorphism and metabolic disorders. However, the specific role of N-glycosylation in SAA4 remains largely unexplored. This study aimed to investigate how N-glycosylation affects the secretion, degradation, and lipoprotein distribution of SAA4. Initially, we designed and constructed an SAA4 plasmid vector to compare with the expression pattern of endogenous SAA4. The exogenous SAA4 was partially N-glycosylated, analogous to endogenous SAA4 in human hepatocellular carcinoma cells. Subsequently, we created a non-glycosylated mutant by replacing asparagine 76 with glutamine. Immunoblotting assays showed that the disruption of N-glycans did not affect the secretion and degradation of SAA4. Furthermore, we analyzed the lipoprotein profiles of SAA4 in the conditioned medium derived from transfected cells. The results revealed that non-glycosylated mutant SAA4 exhibited a distinct lipoprotein distribution compared to wild-type SAA4. Our findings suggest that N-glycosylation may be a key regulator of the distribution of SAA4 in lipoproteins, shedding light on the previously unknown physiological activities of human SAA4.
Collapse
Affiliation(s)
- Toru Takarada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Rikako Fujinaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Masaki Shimada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Masakazu Fukuda
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Toshiyuki Yamada
- Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Masafumi Tanaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
| |
Collapse
|
3
|
Abudouwayiti A, Yisimayili S, Tuersun R, Aimaier S, Yisha D, Zhang XY, Zheng YY, Mahemuti A. HDL Levels as a Novel Predictor of Long-Term Adverse Outcomes in Patients with Heart Failure: A Retrospective Cohort Study. J Inflamm Res 2024; 17:6251-6264. [PMID: 39286819 PMCID: PMC11403014 DOI: 10.2147/jir.s481085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Background The role of high-density lipoprotein cholesterol (HDL-C) in heart failure (HF) outcomes is contentious. We aimed to assess HDL-C's prognostic value in HF patients. Methods In this retrospective cohort study (2012-2022) at the First Affiliated Hospital of Xinjiang Medical University, we analyzed 4442 patients, categorized by HDL-C quartiles. We applied the Cox proportional hazards model to assess survival and report hazard ratios (HR) with 95% confidence intervals (CI). Results Over a decade, we recorded 1354 fatalities (42.3%) and 820 readmissions. The third HDL-C quartile (0.93-1.14 mmol/L) showed the lowest mortality rates, with reduced risks in the second and third quartiles compared to the first (Q2 HR=0.809, 95% CI 0.590-1.109; Q3 HR=0.794, 95% CI 0.564-1.118). The fourth quartile presented a lower mortality risk compared to the first (Q4 HR=0.887, 95% CI 0.693-1.134). A significant correlation existed between HDL-C levels and cardiovascular risk (HR=0.85, 95% CI 0.75-0.96, p<0.01). Conclusion HDL-C levels exhibit a complex association with mortality in HF, indicating the importance of HDL-C in HF prognosis and the need for tailored management strategies.
Collapse
Affiliation(s)
- Aihaidan Abudouwayiti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Sureya Yisimayili
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Ruzeguli Tuersun
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Salamaiti Aimaier
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Didaer Yisha
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xing Yan Zhang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Ying-Ying Zheng
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Ailiman Mahemuti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| |
Collapse
|
4
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Romo EZ, Hong BV, Patel RY, Agus JK, Harvey DJ, Maezawa I, Jin LW, Lebrilla CB, Zivkovic AM. Elevated lipopolysaccharide binding protein in Alzheimer's disease patients with APOE3/E3 but not APOE3/E4 genotype. Front Neurol 2024; 15:1408220. [PMID: 38882697 PMCID: PMC11177782 DOI: 10.3389/fneur.2024.1408220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction The role of lipopolysaccharide binding protein (LBP), an inflammation marker of bacterial translocation from the gastrointestinal tract, in Alzheimer's disease (AD) is not clearly understood. Methods In this study the concentrations of LBP were measured in n = 79 individuals: 20 apolipoprotein E (APOE)3/E3 carriers with and 20 without AD dementia, and 19 APOE3/E4 carriers with and 20 without AD dementia. LBP was found to be enriched in the 1.21-1.25 g/mL density fraction of plasma, which has previously been shown to be enriched in intestinally derived high-density lipoproteins (HDL). LBP concentrations were measured by ELISA. Results LBP was significantly increased within the 1.21-1.25 g/mL density fraction of plasma in APOE3/E3 AD patients compared to controls, but not APOE3/E4 patients. LBP was positively correlated with Clinical Dementia Rating (CDR) and exhibited an inverse relationship with Verbal Memory Score (VMS). Discussion These results underscore the potential contribution of gut permeability to bacterial toxins, measured as LBP, as an inflammatory mediator in the development of AD, particularly in individuals with the APOE3/E3 genotype, who are genetically at 4-12-fold lower risk of AD than individuals who express APOE4.
Collapse
Affiliation(s)
- Eduardo Z. Romo
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Brian V. Hong
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Rishi Y. Patel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Joanne K. Agus
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Hong BV, Agus JK, Tang X, Zheng JJ, Romo EZ, Lei S, Zivkovic AM. Precision Nutrition and Cardiovascular Disease Risk Reduction: the Promise of High-Density Lipoproteins. Curr Atheroscler Rep 2023; 25:663-677. [PMID: 37702886 PMCID: PMC10564829 DOI: 10.1007/s11883-023-01148-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE OF REVIEW Emerging evidence supports the promise of precision nutritional approaches for cardiovascular disease (CVD) prevention. Here, we discuss current findings from precision nutrition trials and studies reporting substantial inter-individual variability in responses to diets and dietary components relevant to CVD outcomes. We highlight examples where early precision nutrition research already points to actionable intervention targets tailored to an individual's biology and lifestyle. Finally, we make the case for high-density lipoproteins (HDL) as a compelling next generation target for precision nutrition aimed at CVD prevention. HDL possesses complex structural features including diverse protein components, lipids, size distribution, extensive glycosylation, and interacts with the gut microbiome, all of which influence HDL's anti-inflammatory, antioxidant, and cholesterol efflux properties. Elucidating the nuances of HDL structure and function at an individual level may unlock personalized dietary and lifestyle strategies to optimize HDL-mediated atheroprotection and reduce CVD risk. RECENT FINDINGS Recent human studies have demonstrated that HDL particles are key players in the reduction of CVD risk. Our review highlights the role of HDL and the importance of personalized therapeutic approaches to improve their potential for reducing CVD risk. Factors such as diet, genetics, glycosylation, and gut microbiome interactions can modulate HDL structure and function at the individual level. We emphasize that fractionating HDL into size-based subclasses and measuring particle concentration are necessary to understand HDL biology and for developing the next generation of diagnostics and biomarkers. These discoveries underscore the need to move beyond a one-size-fits-all approach to HDL management. Precision nutrition strategies that account for personalized metabolic, genetic, and lifestyle data hold promise for optimizing HDL therapies and function to mitigate CVD risk more potently. While human studies show HDL play a key role in reducing CVD risk, recent findings indicate that factors such as diet, genetics, glycosylation, and gut microbes modulate HDL function at the individual level, underscoring the need for precision nutrition strategies that account for personalized variability to optimize HDL's potential for mitigating CVD risk.
Collapse
Affiliation(s)
- Brian V Hong
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Eduardo Z Romo
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Susan Lei
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Trimarco V, Izzo R, Morisco C, Mone P, Manzi MV, Falco A, Pacella D, Gallo P, Lembo M, Santulli G, Trimarco B. High HDL (High-Density Lipoprotein) Cholesterol Increases Cardiovascular Risk in Hypertensive Patients. Hypertension 2022; 79:2355-2363. [PMID: 35968698 PMCID: PMC9617028 DOI: 10.1161/hypertensionaha.122.19912] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence suggests that elevated circulating levels of HDL-C (high-density lipoprotein cholesterol) could be linked to an increased mortality risk. However, to the best of our knowledge, the relationship between HDL-C and specific cardiovascular events has never been investigated in patients with hypertension. METHODS To fill this knowledge gap, we analyzed the relationship between HDL-C levels and cardiovascular events in hypertensive patients within the Campania Salute Network in Southern Italy. RESULTS We studied 11 987 patients with hypertension, who were followed for 25 534 person-years. Our population was divided in 3 groups according to the HDL-C plasma levels: HDL-C<40 mg/dL (low HDL-C); HDL-C between 40 and 80 mg/dL (medium HDL-C); and HDL-C>80 mg/dL (high HDL-C). At the follow-up analysis, adjusting for potential confounders, we observed a total of 245 cardiovascular events with a significantly increased risk of cardiovascular events in the low HDL-C group and in the high HDL-C arm compared with the medium HDL-C group. The spline analysis revealed a nonlinear U-shaped association between HDL-C levels and cardiovascular outcomes. Interestingly, the increased cardiovascular risk associated with high HDL-C was not confirmed in female patients. CONCLUSIONS Our data demonstrate that there is a U-shaped association between HDL-C and the risk of cardiovascular events in male patients with hypertension.
Collapse
Affiliation(s)
| | | | - Carmine Morisco
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy; International Translational Research and Medical Education (ITME) Consortium, Naples, Italy
| | - Pasquale Mone
- Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York City, NY
| | - Maria Virginia Manzi
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy
| | - Angela Falco
- Department of Neuroscience, Reproductive Sciences and Dentistry, “Federico II” University, Naples, Italy
| | - Daniela Pacella
- Department of Public Health, “Federico II” University, Naples, Italy
| | - Paola Gallo
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy
| | - Maria Lembo
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy; International Translational Research and Medical Education (ITME) Consortium, Naples, Italy; Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York City, NY
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy; International Translational Research and Medical Education (ITME) Consortium, Naples, Italy
| |
Collapse
|