1
|
Zhang N, Wang L, Li X, Yang X, Tao X, Jiang H, Yu Y, Liu J, Yu S, Ma Y, Zhang B, Zhang G. Role of Sclerostin in Cardiovascular System. Int J Mol Sci 2025; 26:4552. [PMID: 40429697 PMCID: PMC12111627 DOI: 10.3390/ijms26104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Sclerostin, encoded by the SOST gene, is a novel bone anabolic target for bone diseases. Humanized anti-sclerostin antibody, romosozumab, was approved for treatment of postmenopausal osteoporosis by the US Food and Drug Administration (FDA), but with a black-box warning on cardiovascular risk. The clinical data regarding cardiovascular events from various pre-marketing and post-marketing studies of romosozumab were inconsistent. Overall, the cardiovascular risk of sclerostin inhibition could not be excluded. The restriction of romosozumab in patients with cardiovascular disease history would be necessary. Moreover, genome-wide association study (GWAS) analyses of SOST variants revealed inconsistent results of the association between SOST variations and cardiovascular diseases. Further research incorporating larger sample sizes and functional analyses are necessary. In analyses of serum/tissue sclerostin levels in patients with cardiovascular diseases, the results were controversial but indicated an association between sclerostin and the presence/severity/outcomes of cardiovascular diseases. Nonclinical studies in rodents indicated the inhibitory effect of sclerostin on inflammation, aortic aneurysm, atherosclerosis, and vascular calcification. Sclerostin loop3 participated in the inhibitory effect of sclerostin on bone formation, while the cardiovascular protective effect of sclerostin was independent of sclerostin loop3. Macrophagic sclerostin loop2-apolipoprotein E receptor 2 (ApoER2) interaction participated in the inhibitory effect of sclerostin on inflammation in vitro. Sclerostin in human aortic smooth muscle cells participated in the reduction in calcium deposition. The role of sclerostin in cardiovascular system deserves further investigation.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.Z.); (H.J.); (S.Y.)
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
| | - Luyao Wang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaofei Li
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Xin Yang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaohui Tao
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.Z.); (H.J.); (S.Y.)
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
| | - Yuanyuan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Jin Liu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.Z.); (H.J.); (S.Y.)
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
| | - Yuan Ma
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.Z.); (H.J.); (S.Y.)
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
| | - Ge Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
2
|
Mitsis A, Khattab E, Christodoulou E, Myrianthopoulos K, Myrianthefs M, Tzikas S, Ziakas A, Fragakis N, Kassimis G. From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease. J Clin Med 2024; 13:6352. [PMID: 39518492 PMCID: PMC11545949 DOI: 10.3390/jcm13216352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary artery calcification (CAC) is a hallmark of atherosclerosis and a critical factor in the development and progression of coronary artery disease (CAD). This review aims to address the complex pathophysiological mechanisms underlying CAC and its relationship with CAD. We examine the cellular and molecular processes that drive the formation of calcified plaques, highlighting the roles of inflammation, lipid accumulation, and smooth muscle cell proliferation. Additionally, we explore the genetic and environmental factors that contribute to the heterogeneity in CAC and CAD presentation among individuals. Understanding these intricate mechanisms is essential for developing targeted therapeutic strategies and improving diagnostic accuracy. By integrating current research findings, this review provides a comprehensive overview of the pathways linking CAC to CAD, offering insights into potential interventions to mitigate the burden of these interrelated conditions.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Evi Christodoulou
- Cardiology Department, Limassol General Hospital, State Health Services Organization, Limassol 3304, Cyprus;
| | - Kimon Myrianthopoulos
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
3
|
Ballester-Servera C, Alonso J, Cañes L, Vázquez-Sufuentes P, García-Redondo AB, Rodríguez C, Martínez-González J. Lysyl Oxidase in Ectopic Cardiovascular Calcification: Role of Oxidative Stress. Antioxidants (Basel) 2024; 13:523. [PMID: 38790628 PMCID: PMC11118817 DOI: 10.3390/antiox13050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lysyl oxidase (LOX)-mediated extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease; however, this enzyme also induces oxidative stress. We addressed the contribution of LOX-dependent oxidative stress to cardiovascular calcification. LOX is upregulated in human-calcified atherosclerotic lesions and atheromas from atherosclerosis-challenged LOX transgenic mice (TgLOXVSMC) and colocalized with a marker of oxidative stress (8-oxo-deoxyguanosine) in vascular smooth muscle cells (VSMCs). Similarly, in calcific aortic valves, high LOX expression was detected in valvular interstitial cells (VICs) positive for 8-oxo-deoxyguanosine, while LOX and LOXL2 expression correlated with osteogenic markers (SPP1 and RUNX2) and NOX2. In human VICs, mito-TEMPO and TEMPOL attenuated the increase in superoxide anion levels and the mineralization induced by osteogenic media (OM). Likewise, in OM-exposed VICs, β-aminopropionitrile (a LOX inhibitor) ameliorated both oxidative stress and calcification. Gain- and loss-of-function approaches in VICs demonstrated that while LOX silencing negatively modulates oxidative stress and calcification induced by OM, lentiviral LOX overexpression exacerbated oxidative stress and VIC calcification, effects that were prevented by mito-TEMPO, TEMPOL, and β-aminopropionitrile. Our data indicate that LOX-induced oxidative stress participates in the procalcifying effects of LOX activity in ectopic cardiovascular calcification, and highlight the multifaceted role played by LOX isoenzymes in cardiovascular diseases.
Collapse
Affiliation(s)
- Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Paula Vázquez-Sufuentes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Ana B. García-Redondo
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| |
Collapse
|