1
|
Asker M, Krieger JP, Maric I, Bedel E, Steen J, Börchers S, Wen Y, Longo F, Aronsson P, Winder M, Doyle RP, Hayes MR, Skibicka KP. Vagal oxytocin receptors are necessary for esophageal motility and function. JCI Insight 2025; 10:e190108. [PMID: 40401525 DOI: 10.1172/jci.insight.190108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/28/2025] [Indexed: 05/23/2025] Open
Abstract
Oxytocin plays a key role in reproductive physiology but has recently garnered interest for its involvement in modulating feeding behavior. The vagus nerve contributes to feeding behavior control, as well as other gastrointestinal functions. Oxytocin receptors (OTR) are expressed on the vagus, but their role is poorly understood. Herein, we evaluated the contribution of the vagal OTR to food intake and body weight control in male and female rats. Virogenetic knockdown of vagal OTR resulted in reduced body weight and food intake in male rats. Loss of OTR in the vagus also resulted in suppressed locomotor activity in males but hyperactivity in females. Importantly, rats with vagal OTR knockdown, but not controls, exhibited a significantly elevated mortality rate starting 4 weeks after knockdown, with males being disproportionately affected. Mortality followed large eating bouts and was accompanied by abnormal presence of food in the mouth and esophagus, suggesting death by aspiration or food in the airways and suggesting a crucial role of vagal OTR in upper gastrointestinal tract motility. Furthermore, in vivo experiments revealed impaired esophageal transit. Ex vivo findings indicated oxytocin's contribution to lower esophageal sphincter contraction. Our findings demonstrated a critical role for the oxytocin system: essential function of vagal OTR for esophageal transit and swallowing.
Collapse
Affiliation(s)
- Mohammed Asker
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jean-Philippe Krieger
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, Switzerland
| | - Ivana Maric
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Emre Bedel
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Department of Medical Pharmacology, University of Mersin, Mersin, Turkey
| | - Jenny Steen
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Stina Börchers
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yuxiang Wen
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Francesco Longo
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Patrik Aronsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Michael Winder
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Departments of Medicine and Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Goldberg M, Blevins JE, Wolden-Hanson T, Elfers CT, Chichura KS, Ashlaw EF, den Hartigh LJ, Roth CL, Doyle RP. The Chimeric Peptide (GEP44) Reduces Body Weight and Both Energy Intake and Energy Expenditure in Diet-Induced Obese Rats. Int J Mol Sci 2025; 26:3032. [PMID: 40243702 PMCID: PMC11989200 DOI: 10.3390/ijms26073032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/18/2025] Open
Abstract
We recently reported that a chimeric peptide (GEP44) targeting the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2- receptors decreased body weight (BW), energy intake, and core temperature in diet-induced obese (DIO) male and female mice. In the current study, we tested the hypothesis that the strong reduction in body weight in response to GEP44 is partially related to the stimulation of energy expenditure (EE). To test this, rats were maintained on a high fat diet (HFD) for at least 4 months to elicit DIO prior to undergoing a sequential 2-day vehicle period, 2-day GEP44 (50 nmol/kg) period, and a minimum 2-day washout period, and detailed measures of energy homeostasis. GEP44 (50 nmol/kg) reduced EE (indirect calorimetry), respiratory exchange ratio (RER), core temperature, activity, energy intake, and BW in male and female rats. As in our previous study in mice, GEP44 reduced BW in male and female HFD-fed rats by 3.8 ± 0.2% and 2.3 ± 0.4%, respectively. These effects appear to be mediated by increased lipid oxidation and reductions in energy intake as GEP44 reduced RER and cumulative energy intake in male and female HFD-fed rats. The strong reduction in body weight in response to GEP44 is related to a robust reduction in energy intake, but not to the stimulation of EE. The paradoxical finding that GEP44 reduced EE might be secondary to a reduction in diet-induced thermogenesis or might indicate an important mechanism to limit the overall efficacy of GEP44 to prevent further weight loss.
Collapse
Affiliation(s)
- Matvey Goldberg
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (M.G.); (T.W.-H.)
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (M.G.); (T.W.-H.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA;
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (M.G.); (T.W.-H.)
| | - Clinton T. Elfers
- Seattle Children’s Research Institute, Seattle, WA 98195, USA; (C.T.E.); (C.L.R.)
| | - Kylie S. Chichura
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (K.S.C.); (E.F.A.); (R.P.D.)
| | - Emily F. Ashlaw
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (K.S.C.); (E.F.A.); (R.P.D.)
| | - Laura J. den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA;
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Christian L. Roth
- Seattle Children’s Research Institute, Seattle, WA 98195, USA; (C.T.E.); (C.L.R.)
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Robert P. Doyle
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (K.S.C.); (E.F.A.); (R.P.D.)
- Departments of Medicine and Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13244, USA
| |
Collapse
|
3
|
Slattery JD, Rambousek JR, Tsui E, Honeycutt MK, Goldberg M, Graham JL, Wietecha TA, Wolden-Hanson T, Williams AL, O’Brien KD, Havel PJ, Blevins JE. Effects of systemic oxytocin and beta-3 receptor agonist (CL 316243) treatment on body weight and adiposity in male diet-induced obese rats. Front Endocrinol (Lausanne) 2025; 16:1503096. [PMID: 40104132 PMCID: PMC11913664 DOI: 10.3389/fendo.2025.1503096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
Previous studies have implicated hindbrain oxytocin (OT) receptors in the control of food intake and brown adipose tissue (BAT) thermogenesis. We recently demonstrated that hindbrain [fourth ventricle (4V)] administration of oxytocin (OT) could be used as an adjunct to drugs that directly target beta-3 adrenergic receptors (β3-AR) to elicit weight loss in diet-induced obese (DIO) rodents. What remains unclear is whether systemic OT can be used as an adjunct with the β3-AR agonist, CL 316243, to increase BAT thermogenesis and elicit weight loss in DIO rats. We hypothesized that systemic OT and β3-AR agonist (CL 316243) treatment would produce an additive effect to reduce body weight and adiposity in DIO rats by decreasing food intake and stimulating BAT thermogenesis. To test this hypothesis, we determined the effects of systemic (subcutaneous) infusions of OT (50 nmol/day) or vehicle (VEH) when combined with daily systemic (intraperitoneal) injections of CL 316243 (0.5 mg/kg) or VEH on body weight, adiposity, food intake and brown adipose tissue temperature (TIBAT). OT and CL 316243 monotherapy decreased body weight by 8.0 ± 0.9% (P<0.05) and 8.6 ± 0.6% (P<0.05), respectively, but OT in combination with CL 316243 produced more substantial weight loss (14.9 ± 1.0%; P<0.05) compared to either treatment alone. These effects were associated with decreased adiposity, energy intake and elevated TIBAT during the treatment period. The findings from the current study suggest that the effects of systemic OT and CL 316243 to elicit weight loss are additive and appear to be driven primarily by OT-elicited changes in food intake and CL 316243-elicited increases in BAT thermogenesis.
Collapse
Affiliation(s)
- Jared D. Slattery
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - June R. Rambousek
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Edison Tsui
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Mackenzie K. Honeycutt
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Matvey Goldberg
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington (UW) School of Medicine, Seattle, WA, United States
- University of Washington (UW) Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Tami Wolden-Hanson
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Amber L. Williams
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- University of Washington (UW) Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - James E. Blevins
- Veterans Affairs (VA) Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington (UW) School of Medicine, Seattle, WA, United States
| |
Collapse
|
4
|
Brown TK, Dang C, Del Carmen A, Alharbi S, Chao CL, Xiong L, John NW, Smires A, Ho KJ, Jiang B. Mice Models for Peripheral Denervation to Enhance Vascular Regeneration. Tissue Eng Part C Methods 2025; 31:119-129. [PMID: 40062562 DOI: 10.1089/ten.tec.2025.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Sympathetic innervation plays a critical role in regulating vascular function, yet its influence on vascular regeneration and reinnervation following ischemic injury remains poorly understood. This study develops and validates murine models of localized sympathetic denervation using 6-hydroxydopamine (6-OHDA) to enable study of the sympathetic nervous system's impact on vascular systems during tissue repair. Two methods of 6-OHDA administration were employed: a single topical application during open surgery and minimally invasive weekly subcutaneous injections. The topical application model achieved temporary denervation lasting 1 week without causing vascular damage, while the subcutaneous injection model provided sustained denervation for up to 4 weeks with minimal inflammation and no significant changes to vascular architecture. To investigate the effects of denervation in an ischemic context, these models were combined with a hindlimb ischemia model. Ischemia induced persistent denervation in both 6-OHDA-treated and control limbs, with limited sympathetic nerve regeneration observed over 4 weeks. Despite persistent denervation, microvascular density and perfusion recovery in ischemic muscles were comparable between denervated and control groups. This suggests that ischemia governs vascular regeneration independently of sympathetic input. These results demonstrate that localized 6-OHDA administration provides a versatile tool for achieving controlled sympathetic denervation in peripheral arteries. These models provide a novel platform for studying vascular regeneration and reinnervation under both normal and ischemic conditions, offering novel insights into the interactions between neural regulation and vascular repair processes. This work lays the foundation for future research into neural-vascular crosstalk and new possibilities for developing regenerative therapies targeting the autonomic regulation of vascular health.
Collapse
Affiliation(s)
- Taylor K Brown
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Caitlyn Dang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aurea Del Carmen
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sara Alharbi
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Calvin L Chao
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Liqun Xiong
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nikita Wilson John
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Aidan Smires
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Karen J Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bin Jiang
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Goldberg M, Blevins JE, Wolden-Hanson T, Elfers CT, Chichura KS, Ashlaw EF, den Hartigh LJ, Roth CL, Doyle RP. The Chimeric Peptide (GEP44) Reduces Body Weight and Both Energy Intake and Energy Expenditure in Diet-Induced Obese Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631534. [PMID: 39829931 PMCID: PMC11741413 DOI: 10.1101/2025.01.06.631534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We recently reported that a chimeric peptide (GEP44) targeting the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2- receptors decreased body weight (BW), energy intake and core temperature in diet-induced obese (DIO) male and female mice. In the current study, we tested the hypothesis that the strong reduction of body weight in response to GEP44 is partially related to the stimulation of energy expenditure (EE). To test this, rats were maintained on a HFD for at least 4 months to elicit DIO prior to undergoing a sequential 2-day vehicle period, 2-day GEP44 (50 nmol/kg) period and a minimum 2-day washout period and detailed measures of energy homeostasis. GEP44 (50 nmol/kg) reduced EE (indirect calorimetry), respiratory exchange ratio (RER), core temperature, activity, energy intake and BW in male and female rats. As in our previous study in mice, GEP44 reduced BW in male and female HFD-fed rats by 3.8 ± 0.2% and 2.3 ± 0.4%, respectively. These effects appear to be mediated by increased lipid oxidation and reductions of energy intake as GEP44 reduced RER and cumulative energy intake in male and female HFD-fed rats. The strong reduction of body weight in response to GEP44 is related to a robust reduction of energy intake, but not to stimulation of EE. The paradoxical finding that GEP44 reduced EE might be secondary to a reduction of diet-induced thermogenesis or might indicate an important mechanism to limit the overall efficacy of GEP44 to prevent further weight loss.
Collapse
Affiliation(s)
- Matvey Goldberg
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Clinton T Elfers
- Seattle Children's Research Institute, Seattle, WA, United States 98195, USA
| | - Kylie S Chichura
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Emily F Ashlaw
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Christian L Roth
- Seattle Children's Research Institute, Seattle, WA, United States 98195, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
- Departments of Medicine and Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13244, USA
| |
Collapse
|