1
|
Zambuzzi WF, Ferreira MR. Dynamic ion-releasing biomaterials actively shape the microenvironment to enhance healing. J Trace Elem Med Biol 2025; 89:127657. [PMID: 40250222 DOI: 10.1016/j.jtemb.2025.127657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Dynamic ion-releasing biomaterials have redefined the role of implantable bone devices, transitioning them from passive mechanical support to active players in tissue regeneration. These materials actively modulate the surrounding biological microenvironment by releasing bioactive ions (e.g.: calcium, phosphate, and cobalt) which dynamically interact with cells and tissues surrounding them. This interaction becomes the microenvironment highly active and accelerates bone healing, promoting osteogenesis, and enhancing osseointegration. The ions modulate key biological processes in this regard, including osteoblast adhesion, proliferation, differentiation, angiogenesis, and immune responses, as well as coupled physiological mechanisms, ensuring that the implanted biomaterials foster an optimal environment for bone regeneration. More advanced surface modifications onto materials (e.g.: nanostructuring hydroxyapatites coatings) have been shown to further boost ion release, amplifying the ability of the material to influence surrounding tissues. As a result, ion-releasing biomaterials not only improve implant integration but also accelerate the overall healing process. Looking forward, the development of smart biomaterials capable of adjusting ion release in response to environmental changes offers exciting possibilities for personalized regenerative therapies and this review provides a comprehensive understanding of how dynamic ion-releasing biomaterials actively shape the microenvironment to enhance healing, focusing on their ability to modulate biological processes such as osteogenesis and angiogenesis. By examining the latest advances in surface modifications and ion-release mechanisms, this review also aims to revise the potential of these materials to revolutionize regenerative medicine, offering knowledge to guide the development of next-generation biomaterials for improved clinical outcomes.
Collapse
Affiliation(s)
- Willian Fernando Zambuzzi
- UNESP: São Paulo State University - Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Science, Institute of Biosciences, Botucatu, São Paulo 18618-970, Brazil.
| | - Marcel Rodrigues Ferreira
- UNESP: São Paulo State University - Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
Seo Y, Nawa S, Goto T, Cho S, Sekino T. Densification of hydroxyapatite/zirconia nanocomposites fabricated via low-temperature mineralization sintering process and their mechanical properties. Sci Rep 2025; 15:2479. [PMID: 39833238 PMCID: PMC11747164 DOI: 10.1038/s41598-025-85116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025] Open
Abstract
Hydroxyapatite/zirconia (HAP/ZrO2) composites were fabricated via the low-temperature mineralization sintering process (LMSP) at an extremely low temperature of 130 °C to enhance the mechanical properties of HAP and broaden its practical applications. For this purpose, 5-20 vol% calcia-stabilized ZrO2 were introduced into HAP, and HAP/ZrO2 nanoparticles, mixed with simulated body fluid, were densified under a uniaxial pressure of 800 MPa at 130 °C. At 10 vol% ZrO2, the relative density of the HAP/ZrO2 composite was determined to be 88.3 ± 1.1%. Additionally, it exhibited the highest values of mechanical properties such as the Vickers hardness (3.68 ± 0.18 GPa), fracture toughness (1.11 ± 0.10 MPa·m1/2), biaxial flexural strength (63.72 ± 2.35 MPa), and Young's modulus (83.91 ± 1.93 GPa) among the composite samples. These values were considerably higher than those of the pure HAP matrix due to the adequate reinforcement by ZrO2 nanoparticles. Notably, owing to the low sintering temperature, phase decomposition of HAP, normally observed at high sintering temperatures above 1200 °C, was not observed. These results suggest that LMSP enables the incorporation of reinforcing ceramic materials with high sintering temperatures into bioactive materials at significantly lower temperatures, thereby improving their properties.
Collapse
Affiliation(s)
- Yeongjun Seo
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Osaka, Japan.
| | - Shiori Nawa
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Osaka, Japan
| | - Tomoyo Goto
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Sunghun Cho
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Osaka, Japan
| | - Tohru Sekino
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Osaka, Japan.
| |
Collapse
|
3
|
Gołasz P, Płoska A, Korniienko V, Diedkova K, Varava Y, Zieliński R, Pogorielov M, Simka W. Modification of Ti13Nb13Zr Alloy Surface via Plasma Electrolytic Oxidation and Silver Nanoparticles Decorating. MATERIALS (BASEL, SWITZERLAND) 2025; 18:349. [PMID: 39859817 PMCID: PMC11767042 DOI: 10.3390/ma18020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
The dynamically developing field of implantology requires researchers to search for new materials and solutions. In this study, TiNbZr samples were investigated as an alternative for popular, but potentially hazardous TiAl6V4. Samples were etched, sandblasted, subjected to PEO, and covered in AgNP suspension. Simultaneously, SEM images were taken, and the wettability and roughness of the surface were measured. Samples covered in AgNPs were subjected to biological trials. A six-day measurement of human fibroblast proliferation was conducted to assess biocompatibility, and the population of E. coli and S. aureus was measured over eight hours. Results showed that the TiNbZr PEO surface is biocompatible with human fibroblast cells and promotes growth. However, deposited AgNPs exhibited only slight effectiveness in decreasing bacterial growth over the first two hours. The results suggest that the method of surface preparation is sufficient and might promote osseointegration. On the other hand, more efficient and reliable methods of application of AgNPs should be researched.
Collapse
Affiliation(s)
- Przemysław Gołasz
- Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (P.G.); (A.P.); (M.P.)
- Chemistry Students Research Society, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Płoska
- Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (P.G.); (A.P.); (M.P.)
| | - Viktoriia Korniienko
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia; (V.K.); (K.D.)
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
| | - Kateryna Diedkova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia; (V.K.); (K.D.)
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
| | - Yuliia Varava
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
| | | | - Maksym Pogorielov
- Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (P.G.); (A.P.); (M.P.)
| | - Wojciech Simka
- Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (P.G.); (A.P.); (M.P.)
| |
Collapse
|
4
|
Alrashdi M. Survival Analysis of Prefabricated Zirconia Crowns with and Without Pulpotomy in Primary Teeth: A Retrospective Cohort Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1402. [PMID: 39594977 PMCID: PMC11592978 DOI: 10.3390/children11111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Prefabricated Zirconia Crowns (PZCs) are increasingly preferred for restoring primary teeth due to their esthetic appeal and retention. However, their rigid, unmodifiable design requires precise tooth preparation, often leading to aggressive reduction and potential pulp exposure. Pulpotomy, a standard treatment for reversible pulpitis and mechanical pulp exposure, is sometimes employed before PZCs. While pulpotomy is not routinely performed, its use raises important considerations about the interplay between restorative procedures and pulp therapy in pediatric dentistry, particularly regarding the long-term restoration outcomes of PZCs. PURPOSE This study aimed to investigate the impact of pulpotomy on the success rate of PZCs. METHODS We examined 81 anterior upper primary teeth treated with PZCs in children aged 2-5 years over a two-year period. Cases were divided into groups with and without pulpotomy. Follow-ups occurred at 6-month intervals, assessing clinical and radiographic outcomes. Analyses were performed using SPSS 25.0 software. The statistical significance was p < 0.05. RESULTS A total of 81 anterior primary teeth were included. Chi-square analysis showed no association between pulp therapy and PZC success (χ2 = 0.051, p = 0.822). The Kaplan-Meier survival analysis revealed comparable survival curves and the log-rank test showed no statistically significant difference in survival time between pulpotomy-treated and untreated groups (χ2 = 0.051, p = 0.821). CONCLUSIONS Pulpotomy did not significantly affect the success rate of PZCs within 2 years.
Collapse
Affiliation(s)
- Murad Alrashdi
- Department of Orthodontic and Pediatric Dentistry, College of Dentistry, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
5
|
Siddiqui DA, Lakkasetter Chandrashekar B, Natarajan SG, Palmer KL, Rodrigues DC. Development of a Coculture Model for Assessing Competing Host Mammalian Cell and Bacterial Attachment on Zirconia versus Titanium. ACS Biomater Sci Eng 2024; 10:6218-6229. [PMID: 39312708 DOI: 10.1021/acsbiomaterials.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objectives: Coculture models are limited by bacteria rapidly outcompeting host mammalian cells for nutrients in vitro, resulting in mammalian cell death. The goal of this study was to develop a coculture model enabling survival of mammalian cells and oral bacterial species to assess their competition for growth on dental implant materials. Methods: Two early colonizing oral bacterial species, Streptococcus mutans or Actinomyces naeslundii, were grown in coculture with primary human macrophages or human gingival fibroblasts for up to 7 days on tissue-culture treated polystyrene or polished titanium and zirconia disks. Chloramphenicol was supplemented in cell culture medium at bacteriostatic concentrations to maintain stable bacterial inoculum size. Planktonic and adherent bacterial growth was assessed via spot plating while mammalian cell growth and attachment were evaluated using colorimetric metabolic assay and confocal fluorescence microscopy, respectively. Results: Macrophages and fibroblasts proliferated in the presence of S. mutans and maintained viability above 70% during coculture for up to 7 days on tissue-culture treated polystyrene and polished titanium and zirconia. In contrast, both mammalian cell types exhibited decreasing proliferation and surface coverage on titanium and zirconia over time in coculture with A. naeslundii versus control. S. mutans and A. naeslundii were maintained within an order of magnitude of seeding inoculum sizes throughout coculture. Significance: Cell culture medium supplemented with antibiotics at bacteriostatic concentrations can suppress bacterial overgrowth and facilitate mammalian cell viability in coculture model systems. Within the study's limitations, oral bacteria and mammalian cell growth in coculture are comparable on polished titanium and zirconia surfaces.
Collapse
Affiliation(s)
- Danyal A Siddiqui
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | | | - Smriti G Natarajan
- Texas A&M University School of Dentistry, 3302 Gaston Avenue, Dallas, Texas 75246, United States
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
6
|
Andrei AD, Constantin CA, Tabitha AL, Anca J. Zirconia single retainer fixed dental prostheses for the posterior region-A novel preparation technique and literature review. Clin Case Rep 2024; 12:e9460. [PMID: 39421529 PMCID: PMC11483597 DOI: 10.1002/ccr3.9460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 10/19/2024] Open
Abstract
The principles of tissue preservation, minimally invasiveness and approaching different clinical situations biologically rather than surgically govern today's dentistry. Thus, different clinical scenarios require procedures that offer the dentist and the patient the possibility to choose the more invasive treatment options later in life. Subsequently, the case reported refers to a minimally invasive technique that treats single tooth edentulism using single partial retainer FDPs fabricated from monolithic zirconia. This approach is conservative, biocompatible, aesthetic, strong, rapidly obtained through CAD/CAM techniques and cost-effective.
Collapse
Affiliation(s)
- Adam Dragoș Andrei
- Department of Prosthodontics, Faculty of Dental MedicineUniversity of Medicine and Pharmacy “Victor Babeș” TimișoaraTimișoaraRomania
| | - Cândea Adrian Constantin
- Department of Prosthodontics, Faculty of Dental MedicineUniversity of Medicine and Pharmacy “Victor Babeș” TimișoaraTimișoaraRomania
| | - Avram Liane Tabitha
- Department of Prosthodontics, Faculty of Dental MedicineUniversity of Medicine and Pharmacy “Victor Babeș” TimișoaraTimișoaraRomania
| | - Jivănescu Anca
- Department of Prosthodontics, Faculty of Dental MedicineUniversity of Medicine and Pharmacy “Victor Babeș” TimișoaraTimișoaraRomania
- Digital and Advanced Technique for EndodonticRestorative and Prosthetic Treatment TADERPTimișoaraRomania
| |
Collapse
|
7
|
Golriz N, Hosseinabadi N. Additive manufacturing of ceria and yttria incorporated toughened monolithic zirconia dental ceramic crowns: In vitro simulated aging behavior. J Prosthet Dent 2024; 132:624.e1-624.e12. [PMID: 38981804 DOI: 10.1016/j.prosdent.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024]
Abstract
STATEMENT OF PROBLEM The comprehensive characterization of additively manufactured zirconia-based dental prostheses can promote widespread clinical application. However, simulated in vitro analysis of the aging behavior is lacking. PURPOSE The purpose of this in vitro study was to assess the simulated in vitro durability of monolithic transformation toughened additively manufactured zirconia-based restorations with different compositions to predict the clinical reliability depending on their ceramic composition. MATERIAL AND METHODS Crowns were 3-dimensionally (3D) printed by using a combination of custom-made stereolithography and a laser polymerized digital light processing process with high solid content slurries with suitable photo-interactive polymers. The main characteristics tested for mechanical behavior (structural reliability and flexural strength) were overall toughness and fatigue limits. Combinations of chemical compositions including yttria and ceria additives and processing conditions including pressing and sintering temperatures were applied to transform custom stereolithography and digitally light activated polymerized green parts to high strength and toughened ceramic crowns. The fluctuations in strength and toughness of as-sintered parts before and after physical thermocycling, physiochemical hydrothermal aging, and mechanical mastication simulation were studied via statistical methods (ANOVA) to indicate variable dependencies (α=.05). RESULTS Near theoretical density as high as 99.1%, minimum surface porosity as low as 0.25%, medium translucency, and high contrasts were achieved. The high original hardness near 19 GPa, a toughness of 6 to 7 MPa.m1/2, and 1300 MPa flexural strength with 95% confidence interval in as-sintered specimens satisfied the requirements for crowns. The simultaneously yttria and ceria stabilized systems should be able to resist low-temperature degradation aging with decreases as small as 2% in flexural strength and near 25% in fatigue fracture limits. The structure and process dependency of the mechanical properties of flexural strength (P<.020), hardness (P<.030), and modulus of elasticity (P<.020) were statistically significant while the toughness showed significant dependency (P≤.001). CONCLUSIONS The 3D printed posterior crowns with enhanced mechanical properties and augmented simulated in vitro durability can be manufactured by adding tetragonal phase stabilizer oxides (ceria and yttria) to zirconia-based ingredients. The combination of both oxide stabilizers in the additive manufacturing of crowns is a significant approach to improving clinical performance, enhanced toughness, and fatigue limit before and after physicomechanical, mechanochemical, and thermocyclic aging analysis.
Collapse
Affiliation(s)
- Naghmeh Golriz
- Restorative Dentistry Specialist, Private practice, Shiraz, Iran
| | - Navid Hosseinabadi
- Assistant Professor, Materials Science and Engineering, Department of Materials and Metallurgical Engineering, Abadeh Higher Education Center, Shiraz University, Shiraz, Iran.
| |
Collapse
|
8
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
9
|
Ferraz MP. An Overview on the Big Players in Bone Tissue Engineering: Biomaterials, Scaffolds and Cells. Int J Mol Sci 2024; 25:3836. [PMID: 38612646 PMCID: PMC11012232 DOI: 10.3390/ijms25073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Presently, millions worldwide suffer from degenerative and inflammatory bone and joint issues, comprising roughly half of chronic ailments in those over 50, leading to prolonged discomfort and physical limitations. These conditions become more prevalent with age and lifestyle factors, escalating due to the growing elderly populace. Addressing these challenges often entails surgical interventions utilizing implants or bone grafts, though these treatments may entail complications such as pain and tissue death at donor sites for grafts, along with immune rejection. To surmount these challenges, tissue engineering has emerged as a promising avenue for bone injury repair and reconstruction. It involves the use of different biomaterials and the development of three-dimensional porous matrices and scaffolds, alongside osteoprogenitor cells and growth factors to stimulate natural tissue regeneration. This review compiles methodologies that can be used to develop biomaterials that are important in bone tissue replacement and regeneration. Biomaterials for orthopedic implants, several scaffold types and production methods, as well as techniques to assess biomaterials' suitability for human use-both in laboratory settings and within living organisms-are discussed. Even though researchers have had some success, there is still room for improvements in their processing techniques, especially the ones that make scaffolds mechanically stronger without weakening their biological characteristics. Bone tissue engineering is therefore a promising area due to the rise in bone-related injuries.
Collapse
Affiliation(s)
- Maria Pia Ferraz
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
10
|
Major R, Grajoszek A, Byrski A, Szawiraacz K, Barski JJ, Major Ł, Gawlikowski M, Kopernik M, Kot M, Dyner A, Lackner JM. Evaluation of In Vivo Biocompatibility in Preclinical Studies of a Finger Implant Medical Device Correlated with Mechanical Properties and Microstructure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:376-388. [PMID: 38131318 DOI: 10.1021/acsami.3c16742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The aim of the experiment was to evaluate the biocompatibility of four 3D-printed biomaterials planned for use in the surgical treatment of finger amputees: Ti-6Al-4 V (Ti64), ZrO2-Al2O3 ceramic material (ATZ20), and osteoconductive (anodized Ti64) and antibacterial (Hydroxyapatite, HAp) coatings that adhere well to materials dedicated to finger bone implants. The work concerns the correlation of mechanical, microstructural, and biological properties of dedicated materials. Biological tests consisted of determining the overall cytotoxicity of the organism on the basis of in vivo tests carried out in accordance with the ISO 10993-6 and ISO 10993-11 standards. Clinical observations followed by diagnostic examinations, histopathological evaluation, and biochemical characterization showed no significant differences between control and tested groups of animals. The wound healed without complication, and no pathological effects were found. The wear test showed the fragility of the hydroxyapatite thin layer and the mechanical stability of the zirconia-based ceramic substrate. Electron microscopy observations revealed the layered structure of tested substrates and coatings.
Collapse
Affiliation(s)
- Roman Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
| | - Aniela Grajoszek
- Department for Experimental Medicine, Medical University of Silesia, 4 Medykow St., 40-752 Katowice, Poland
| | - Adam Byrski
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
| | - Karolina Szawiraacz
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
| | - Jaroslaw Jerzy Barski
- Department for Experimental Medicine, Medical University of Silesia, 4 Medykow St., 40-752 Katowice, Poland
| | - Łukasz Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
| | - Maciej Gawlikowski
- Foundation of Cardiac Surgery Development, 345A Wolnosci St., 41-800 Zabrze, Poland
| | | | - Marcin Kot
- AGH University of Krakow, 30 Mickiewicza St., 30-059 Krakow, Poland
| | - Aneta Dyner
- Manufacturer of Surgical Instruments CHIRMED, 8A Mstowska St., 42-240 Rudniki, Poland
| | - Juergen M Lackner
- Joanneum Research Forschungsges. m.b.H., Institute of Surface Technologies and Photonics, Functional Surfaces, 94 Leobner Straße St., A-8712 Niklasdorf, Austria
| |
Collapse
|
11
|
Yigit BS, Al-Akkad M, Mounajjed R. Zirconia Ceramics. ACTA MEDICA (HRADEC KRALOVE) 2024; 67:39-45. [PMID: 39434669 DOI: 10.14712/18059694.2024.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Zirconia ceramics have become popular among other dental ceramics thanks to their biological, mechanical, optical, and aesthetic properties. CAD/CAM (computer-aided design/ computer-aided manufacturing) technology improvement has played a vital role in the increased popularity of zirconia ceramics; easy computer manipulation significantly expanded the possibility of using different types of restorations. Zirconia ceramics have a broad spectrum of indications in prosthetic dentistry, from simple restorations to complex structures supported by dental implants. A good orientation in the classification, features, and manipulation of zirconia ceramics is the main key to success.
Collapse
Affiliation(s)
- Bedirhan Savas Yigit
- Institute of Dentistry and Oral Sciences, Palacky University Olomouc, Olomouc, Czech Republic
| | - Marwan Al-Akkad
- Institute of Dentistry and Oral Sciences, Palacky University Olomouc, Olomouc, Czech Republic
| | - Radek Mounajjed
- Institute of Dentistry and Oral Sciences, Palacky University Olomouc, Olomouc, Czech Republic.
- Private Clinician, DCM Clinic, Hradec Králové, Czech Republic.
| |
Collapse
|
12
|
Singh PV, Reche A, Paul P, Agarwal S. Zirconia Facts and Perspectives for Biomaterials in Dental Implantology. Cureus 2023; 15:e46828. [PMID: 37954766 PMCID: PMC10636592 DOI: 10.7759/cureus.46828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Dental implantology has witnessed remarkable advancements in recent years, and zirconia has emerged as a prominent biomaterial for dental implant applications. This review explores the multifaceted aspects of zirconia, focusing on its properties, processing methods, biocompatibility, mechanical performance, and clinical applications. Over the past few decades, the most popular choice of material for dental implantology has been titanium which has been found to have the highest success rate of implant treatment. However, recently, it has been observed that zirconia might replace titanium and eventually emerge as one of the gold-standard materials of dental implants. Analysis of biomechanical sciences and biomaterial sciences provides an opportunity for the refinement of design and material notions for surgical implants. However, the most important aspect and prime concern is how tissue at the implant site responds to biomechanical disturbances caused by foreign materials. The literature revealed that zirconia has certain characteristics that make it an excellent material for implants, including biocompatibility and osseointegration which depicts positive soft tissue response with low plaque affinity as well as aesthetics owing to light transmission and color. Additionally, this review discusses the current challenges and prospects of zirconia in dental implantology as well as aims to provide dental professionals and researchers with a comprehensive understanding of zirconia's potential as a biomaterial in dental implantology. The present overview of available literature intends to highlight and explore the biological characteristics of zirconia for applications in dental implantology. However, research is urgently required to fill in gaps over time for clinical assessments of all zirconia implants, consequently, the implementation of hybrid systems (a titanium screw with a zirconia collar) has recently been suggested.
Collapse
Affiliation(s)
- Prachi V Singh
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyanka Paul
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shivangi Agarwal
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
13
|
Basir A, Muhamad N, Sulong AB, Amin MBM, Jamadon NH, Radzuan NAM. Micro-Injection Molding and Debinding Behavior of Hydroxyapatite/Zirconia Bi-Materials Fabricated by Two-Component Micro-Powder Injection Molding Process. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6375. [PMID: 37834512 PMCID: PMC10573493 DOI: 10.3390/ma16196375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
The micro-scale joining of two different materials using two-component micro-powder injection molding (2C-µPIM) is an intriguing technique. The formation of defects in bi-materials at different processing stages makes this technique challenging. This study presents the fabrication of defect-free bi-material micro-parts containing hydroxyapatite (HA) and 3 mol% yttria-stabilized zirconia (3YSZ) via 2C-µPIM. Critical powder volume concentrations (CPVCs) of 61.7 vol% and 47.1 vol% were obtained for the HA and 3YSZ powders, respectively. Based on the CPVCs, the optimal loadings for the HA and 3YSZ powders were selected as 60 vol% and 45 vol%, respectively. The HA and 3YSZ feedstocks were prepared by separately mixing the optimal powder contents with low-density polyethylene (LDPE) and palm stearin binders. The feedstocks displayed pseudoplastic behavior, and the lowest ranges of viscosity for the HA and 3YSZ at a temperature of 180 °C were 157.1-1392.5 Pa·s and 726.2-985.5 Pa·s, respectively. The feedstocks were injected to produce green HA/3YSZ micro-sized components. It was found that a solvent debinding temperature of 70 °C removed 60.6% of the palm stearin binder from the sample. In the thermal debinding stage, the open channels that formed in the bi-material sample's solvent debound at 70 °C and contributed to the removal of 93 to 95% of the binder system. When the debound bi-materials were sintered at 1300 °C, the highest relative density of 96.3% was obtained. The sintering operation revealed a linear shrinkage between 13 and 17% in the sintered HA/3YSZ micro-parts.
Collapse
Affiliation(s)
| | | | - Abu Bakar Sulong
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.B.); (N.M.); (M.b.M.A.); (N.H.J.); (N.A.M.R.)
| | | | | | | |
Collapse
|
14
|
Taha SK, Hassan EA, Mousa S, El-Bassyouni GT, Shalash HN, Abdel Hamid MA. Biphasic calcium phosphate doped with zirconia nanoparticles for reconstruction of induced mandibular defects in dogs: cone-beam computed tomographic and histopathologic evaluation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:27. [PMID: 37204535 DOI: 10.1007/s10856-023-06731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
The present study aimed to evaluate osteogenic potential and biocompatibility of combining biphasic calcium phosphate with zirconia nanoparticles (4Zr TCP/HA) compared to biphasic calcium phosphate (TCP/HA) for reconstruction of induced mandibular defects in dog model. TCP/HA and 4Zr TCP/HA scaffolds were prepared. Morphological, physicochemical, antibacterial, cytocompatibility characterization were tested. In vivo application was performed in 12 dogs where three critical-sized mandibular defects were created in each dog. Bone defects were randomly allocated into: control, TCP/HA, and 4Zr TCP/HA groups. Bone density and bone area percentage were evaluated at 12 weeks using cone-beam computed tomographic, histopathologic, histomorphometric examination. Bone area density was statistically increased (p < 0.001) in TCP/HA and 4Zr TCP/HA groups compared to control group both in sagittal and coronal views. Comparing TCP/HA and 4Zr TCP/HA groups, the increase in bone area density was statistically significant in coronal view (p = 0.002) and sagittal view (p = 0.05). Histopathologic sections of TCP/HA group demonstrated incomplete filling of the defect with osteoid tissue. Doping with zirconia (4Zr TCP/HA group), resulted in statistically significant increase (p < 0.001) in bone formation (as indicated by bone area percentage) and maturation (as confirmed by Masson trichrome staining) compared to TCP/HA group. The newly formed bone was mature and organized with more trabecular thickness and less trabecular space in between. Physicochemical, morphological and bactericidal properties of combining zirconia and TCP/HA were improved. Combining zirconia and TCP/HA resulted in synergistic action with effective osteoinduction, osteoconduction and osteointegration suggesting its suitability to restore damaged bone in clinical practice.
Collapse
Affiliation(s)
- Said K Taha
- Surgery and Oral Medicine Department, Oral and Dental Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Elham A Hassan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Sahar Mousa
- Inorganic Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Heba N Shalash
- Basic Dental Science Department, Oral and Dental Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed A Abdel Hamid
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
15
|
Hossain N, Mobarak MH, Hossain A, Khan F, Mim JJ, Chowdhury MA. Advances of plant and biomass extracted zirconium nanoparticles in dental implant application. Heliyon 2023; 9:e15973. [PMID: 37215906 PMCID: PMC10192772 DOI: 10.1016/j.heliyon.2023.e15973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Nanoparticles are minimal materials with unique physicochemical features that set them apart from bulk materials of the same composition. These properties make nanoparticles highly desirable for use in commercial and medical research. The primary intention for the development of nanotechnology is to achieve overarching social objectives like bettering our understanding of nature, boosting productivity, improving healthcare, and extending the bounds of sustainable development and human potential. Keeping this as a motivation, Zirconia nanoparticles are becoming the preferred nanostructure for modern biomedical applications. This nanotechnology is exceptionally versatile and has several potential uses in dental research. This review paper concentrated on the various benefits of zirconium nanoparticles in dentistry and how they provide superior strength and flexibility compared to their counterparts. Moreover, the popularity of zirconium nanoparticles is also growing as it has strong biocompatibility potency. Zirconium nanoparticles can be used to develop or address the major difficulty in dentistry. Therefore, this review paper aims to provide a summary of the fundamental research and applications of zirconium nanoparticles in dental implants.
Collapse
Affiliation(s)
- Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Amran Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fardin Khan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| |
Collapse
|
16
|
Bizo L, Mureşan-Pop M, Barabás R, Barbu-Tudoran L, Berar A. In Vitro Degradation of Mg-Doped ZrO 2 Bioceramics at the Interface with Xerostom ® Saliva Substitute Gel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2680. [PMID: 37048973 PMCID: PMC10096315 DOI: 10.3390/ma16072680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Zirconia-based bioceramics, one of the most important materials used for dental applications, have been intensively studied in recent years due to their excellent mechanical resistance and chemical inertness in the mouth. In this work, the structural, morphological and dissolution properties of the Zr1-xMgxO2 (x = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3) system, prepared by the conventional ceramic method, were evaluated before and after immersion in saliva substitute gel (Xerostom®, Biocosmetics Laboratories, Madrid, Spain), one of the most common topical dry mouth products used in dentistry. The X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) techniques were employed to investigate the phase transformations and morphology of the ceramics during the degradation process in Xerostom®. In vitro analyses showed overall good stability in the Xerostom® environment, except for the x = 0.05 composition, where significant t- to m-ZrO2 transformation occurred. In addition, the strong interconnection of the grains was maintained after immersion, which could allow a high mechanical strength of the ceramics to be obtained.
Collapse
Affiliation(s)
- Liliana Bizo
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu Laurian Str., RO-400271 Cluj-Napoca, Romania;
| | - Marieta Mureşan-Pop
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute for Interdisciplinary Research on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu Laurian Str., RO-400271 Cluj-Napoca, Romania;
| | - Réka Barabás
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “Prof. C. Craciun”, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor Str., RO-400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donath Str., RO-400293 Cluj-Napoca, Romania
| | - Antonela Berar
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 32 Clinicilor Str., RO-400006 Cluj-Napoca, Romania;
| |
Collapse
|