1
|
Sherin RPV, Vietor NO, Usman A, Hoang TD, Shakir MKM. Cardiovascular Disorders Associated With Acromegaly: an Update. Endocr Pract 2024; 30:1212-1219. [PMID: 39332498 DOI: 10.1016/j.eprac.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
The most common causes of increased cardiovascular mortality in acromegaly are cardiac arrhythmias and sudden cardiac death. Acromegalic cardiomyopathy is defined as concentric biventricular hypertrophy and diastolic dysfunction when other cardiac diseases such as hypertension, diabetes mellitus, and arrhythmias-related cardiac disorders have been excluded. This also contributes to significant morbidity and mortality in these patients. The main risk factors contributing to the development of cardiomyopathy include advancing age, disease duration, and body mass index. The duration of growth hormone excess is more closely associated with the development of biventricular enlargement, diastolic dysfunction, heart failure, and valvular disease than the degree of hormone elevation. Additionally, other cardiovascular disorders such as coronary artery disease, arrhythmias, valvular heart diseases, systemic hypertension, atherosclerosis, and rarely congestive cardiac failure are involved in the shortened life span of these patients especially if poorly controlled. Biochemical control of acromegaly with the recently available multimodal treatment along with better management of cardiovascular comorbidities has improved the morbidity and mortality rates of patients with acromegaly. However, with the recent advances in the treatment of acromegaly, neoplastic causes presently remain as the main leading cause of death in these patients.
Collapse
Affiliation(s)
- Rinsha P V Sherin
- Division of Endocrinology, Department of Endocrinology, Diabetes and Metabolism, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Nicole O Vietor
- Division of Endocrinology, Department of Endocrinology, Diabetes and Metabolism, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Aqueel Usman
- Division of Endocrinology, Department of Endocrinology, Diabetes and Metabolism, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Thanh D Hoang
- Division of Endocrinology, Department of Endocrinology, Diabetes and Metabolism, Walter Reed National Military Medical Center, Bethesda, Maryland.
| | - Mohamed K M Shakir
- Division of Endocrinology, Department of Endocrinology, Diabetes and Metabolism, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
2
|
Lin N, Zhang H, Li X, Niu Y, Gu H, Lu S, Yang Z, Su Q, Qin L. The influence of different glucose tolerance on QTc interval: a population-based study. BMC Cardiovasc Disord 2023; 23:47. [PMID: 36698056 PMCID: PMC9875502 DOI: 10.1186/s12872-023-03081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Corrected QT (QTc) interval has been reported to be associated with type 2 diabetes. This study aimed to explore the relationship between different glucose tolerance and QTc intervals among middle-aged and older Chinese individuals. METHODS We conducted a cross-sectional analysis that included 9898 subjects (3194 men and 6704 women) in a Chinese population. Glucose tolerance was studied during the oral glucose tolerance test (OGTT). Insulin, blood pressure, hemoglobin A1c (HbA1c), serum lipids, hepatic transaminases and waist-to-hip ratio were assessed. The QTc interval was derived from ECG recordings, and the subjects were stratified based on different glucose tolerance. RESULTS QTc interval levels were increased significantly in the subjects with abnormal glucose metabolism compared with the normal glucose regulation group. Multiple regression analyses showed that the QTc interval was significantly associated with fasting plasma glucose, 2-h OGTT plasma glucose and HbA1c. The odds ratio of prolonged QTc was 1.396 for impaired glucose regulation (IFG)/impaired fasting glucose (IGT) (95% CI 0.126-1.730), and 1.342 for type 2 diabetes (95% CI 0.142-1.577) after all potential confounders were adjusted. CONCLUSIONS Impaired glucose tolerance (IGR) and diabetes are associated with prolonged QTc intervals among middle-aged and older Chinese individuals. Abnormal glucose regulation can be used to monitor the QTc interval in the population.
Collapse
Affiliation(s)
- Ning Lin
- grid.412987.10000 0004 0630 1330Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.284723.80000 0000 8877 7471Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hongmei Zhang
- grid.412987.10000 0004 0630 1330Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyong Li
- grid.412987.10000 0004 0630 1330Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Niu
- grid.412987.10000 0004 0630 1330Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Gu
- grid.39436.3b0000 0001 2323 5732Department of Endocrinology, Chongming Hospital affiliated to Shanghai University of Health & Medicine Science, Shanghai, China
| | - Shuai Lu
- grid.39436.3b0000 0001 2323 5732Department of Endocrinology, Chongming Hospital affiliated to Shanghai University of Health & Medicine Science, Shanghai, China
| | - Zhen Yang
- grid.412987.10000 0004 0630 1330Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Su
- grid.412987.10000 0004 0630 1330Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Qin
- grid.39436.3b0000 0001 2323 5732Department of Endocrinology, Chongming Hospital affiliated to Shanghai University of Health & Medicine Science, Shanghai, China
| |
Collapse
|
3
|
Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart. Int J Mol Sci 2022; 23:ijms23116021. [PMID: 35682699 PMCID: PMC9181026 DOI: 10.3390/ijms23116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia in clinical trials. In order to explore the mechanisms responsible for the lack of protective effect, we investigated in vivo the effect of metformin on cardiac electrical activity in non-diabetic rats; and in vitro in isolated ventricular myocytes, HEK293 cells expressing the hERG channel and human induced pluripotent stem cells derived cardiomyocytes (hIPS-CMs). Surface electrocardiograms showed that long-term metformin treatment (7 weeks) at therapeutic doses prolonged cardiac repolarization, reflected as QT and QTc interval duration, and increased ventricular arrhythmia during the caffeine/dobutamine challenge. Patch-clamp recordings in ventricular myocytes isolated from treated animals showed that the cellular mechanism is a reduction in the cardiac transient outward potassium current (Ito). In vitro, incubation with metformin for 24 h also reduced Ito, prolonged action potential duration, and increased spontaneous contractions in ventricular myocytes isolated from control rats. Metformin incubation also reduced IhERG in HEK293 cells. Finally, metformin incubation prolonged action potential duration at 30% and 90% of repolarization in hIPS-CMs, which is compatible with the reduction of Ito and IhERG. Our results show that metformin directly modifies the electrical behavior of the normal heart. The mechanism consists in the inhibition of repolarizing currents and the subsequent decrease in repolarization capacity, which prolongs AP and QTc duration.
Collapse
|
4
|
Zhang D, Tu H, Hu W, Duan B, Zimmerman MC, Li YL. Hydrogen Peroxide Scavenging Restores N-Type Calcium Channels in Cardiac Vagal Postganglionic Neurons and Mitigates Myocardial Infarction-Evoked Ventricular Arrhythmias in Type 2 Diabetes Mellitus. Front Cardiovasc Med 2022; 9:871852. [PMID: 35548411 PMCID: PMC9082497 DOI: 10.3389/fcvm.2022.871852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveWithdrawal of cardiac vagal activity is associated with ventricular arrhythmia-related high mortality in patients with type 2 diabetes mellitus (T2DM). Our recent study found that reduced cell excitability of cardiac vagal postganglionic (CVP) neurons is involved in cardiac vagal dysfunction and further exacerbates myocardial infarction (MI)-evoked ventricular arrhythmias and mortality in T2DM. However, the mechanisms responsible for T2DM-impaired cell excitability of CVP neurons remain unclear. This study tested if and how elevation of hydrogen peroxide (H2O2) inactivates CVP neurons and contributes to cardiac vagal dysfunction and ventricular arrhythmogenesis in T2DM.Methods and ResultsRat T2DM was induced by a high-fat diet plus streptozotocin injection. Local in vivo transfection of adenoviral catalase gene (Ad.CAT) successfully induced overexpression of catalase and subsequently reduced cytosolic H2O2 levels in CVP neurons in T2DM rats. Ad.CAT restored protein expression and ion currents of N-type Ca2+ channels and increased cell excitability of CVP neurons in T2DM. Ad.CAT normalized T2DM-impaired cardiac vagal activation, vagal control of ventricular function, and heterogeneity of ventricular electrical activity. Additionally, Ad.CAT not only reduced the susceptibility to ventricular arrhythmias, but also suppressed MI-evoked lethal ventricular arrhythmias such as VT/VF in T2DM.ConclusionsWe concluded that endogenous H2O2 elevation inhibited protein expression and activation of N-type Ca2+ channels and reduced cell excitability of CVP neurons, which further contributed to the withdrawal of cardiac vagal activity and ventricular arrhythmogenesis in T2DM. Our current study suggests that the H2O2-N-type Ca2+ channel signaling axis might be an effective therapeutic target to suppress ventricular arrhythmias in T2DM patients with MI.
Collapse
Affiliation(s)
- Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Yu-Long Li
| |
Collapse
|
5
|
Remme CA. Sudden cardiac death in diabetes and obesity: mechanisms and therapeutic strategies. Can J Cardiol 2022; 38:418-426. [PMID: 35017043 DOI: 10.1016/j.cjca.2022.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias and sudden cardiac death (SCD) occur most frequently in the setting of coronary artery disease, cardiomyopathy and heart failure, but are also increasingly observed in individuals suffering from diabetes mellitus and obesity. The incidence of these metabolic disorders is rising in Western countries, but adequate prevention and treatment of arrhythmias and SCD in affected patients is limited due to our incomplete knowledge of the underlying disease mechanisms. Here, an overview is presented of the prevalence of electrophysiological disturbances, ventricular arrhythmias and SCD in the clinical setting of diabetes and obesity. Experimental studies are reviewed, which have identified disease pathways and associated modulatory factors, in addition to pro-arrhythmic mechanisms. Key processes are discussed, including mitochondrial dysfunction, oxidative stress, cardiac structural derangements, abnormal cardiac conduction, ion channel dysfunction, prolonged repolarization and dysregulation of intracellular sodium and calcium homeostasis. In addition, the recently identified pro-arrhythmic effects of dysregulated branched chain amino acid metabolism, a common feature in patients with metabolic disorders, are addressed. Finally, current management options are discussed, in addition to the potential development of novel preventive and therapeutic strategies based on recent insight gained from translational studies.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Hegyi B, Ko CY, Bossuyt J, Bers DM. Two-hit mechanism of cardiac arrhythmias in diabetic hyperglycaemia: reduced repolarization reserve, neurohormonal stimulation, and heart failure exacerbate susceptibility. Cardiovasc Res 2021; 117:2781-2793. [PMID: 33483728 PMCID: PMC8683706 DOI: 10.1093/cvr/cvab006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/10/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS Diabetic hyperglycaemia is associated with increased arrhythmia risk. We aimed to investigate whether hyperglycaemia alone can be accountable for arrhythmias or whether it requires the presence of additional pathological factors. METHODS AND RESULTS Action potentials (APs) and arrhythmogenic spontaneous diastolic activities were measured in isolated murine ventricular, rabbit atrial, and ventricular myocytes acutely exposed to high glucose. Acute hyperglycaemia increased the short-term variability (STV) of action potential duration (APD), enhanced delayed afterdepolarizations, and the inducibility of APD alternans during tachypacing in both murine and rabbit atrial and ventricular myocytes. Hyperglycaemia also prolonged APD in mice and rabbit atrial cells but not in rabbit ventricular myocytes. However, rabbit ventricular APD was more strongly depressed by block of late Na+ current (INaL) during hyperglycaemia, consistent with elevated INaL in hyperglycaemia. All the above proarrhythmic glucose effects were Ca2+-dependent and abolished by CaMKII inhibition. Importantly, when the repolarization reserve was reduced by pharmacological inhibition of K+ channels (either Ito, IKr, IKs, or IK1) or hypokalaemia, acute hyperglycaemia further prolonged APD and further increased STV and alternans in rabbit ventricular myocytes. Likewise, when rabbit ventricular myocytes were pretreated with isoproterenol or angiotensin II, hyperglycaemia significantly prolonged APD, increased STV and promoted alternans. Moreover, acute hyperglycaemia markedly prolonged APD and further enhanced STV in failing rabbit ventricular myocytes. CONCLUSION We conclude that even though hyperglycaemia alone can enhance cellular proarrhythmic mechanisms, a second hit which reduces the repolarization reserve or stimulates G protein-coupled receptor signalling greatly exacerbates cardiac arrhythmogenesis in diabetic hyperglycaemia.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| | - Christopher Y Ko
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, CA 95616, USA
| |
Collapse
|
7
|
Xu X, Xu DS. Prospects for the application of transcranial magnetic stimulation in diabetic neuropathy. Neural Regen Res 2021; 16:955-962. [PMID: 33229735 PMCID: PMC8178790 DOI: 10.4103/1673-5374.297062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Encouraging results have been reported for the use of transcranial magnetic stimulation-based nerve stimulation in studies of the mechanisms of neurological regulation, nerve injury repair, and nerve localization. However, to date, there are only a few reviews on the use of transcranial magnetic stimulation for diabetic neuropathy. Patients with diabetic neuropathy vary in disease progression and show neuropathy in the early stage of the disease with mild symptoms, making it difficult to screen and identify. In the later stage of the disease, irreversible neurological damage occurs, resulting in treatment difficulties. In this review, we summarize the current state of diabetic neuropathy research and the prospects for the application of transcranial magnetic stimulation in diabetic neuropathy. We review significant studies on the beneficial effects of transcranial magnetic stimulation in diabetic neuropathy treatment, based on the outcomes of its use to treat neurodegeneration, pain, blood flow change, autonomic nervous disorders, vascular endothelial injury, and depression. Collectively, the studies suggest that transcranial magnetic stimulation can produce excitatory/inhibitory stimulation of the cerebral cortex or local areas, promote the remodeling of the nervous system, and that it has good application prospects for the localization of the injury, neuroprotection, and the promotion of nerve regeneration. Therefore, transcranial magnetic stimulation is useful for the screening and early treatment of diabetic neuropathy. Transcranial magnetic stimulation can also alleviate pain symptoms by changing the cortical threshold and inhibiting the conduction of sensory information in the thalamo-spinal pathway, and therefore it has therapeutic potential for the treatment of pain and pain-related depressive symptoms in patients with diabetic neuropathy. Additionally, based on the effect of transcranial magnetic stimulation on local blood flow and its ability to change heart rate and urine protein content, transcranial magnetic stimulation has potential in the treatment of autonomic nerve dysfunction and vascular injury in diabetic neuropathy. Furthermore, oxidative stress and the inflammatory response are involved in the process of diabetic neuropathy, and transcranial magnetic stimulation can reduce oxidative damage. The pathological mechanisms of diabetic neuropathy should be further studied in combination with transcranial magnetic stimulation technology.
Collapse
Affiliation(s)
- Xi Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Dong-Sheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Vasheghani M, Sarvghadi F, Beyranvand MR, Emami H. The relationship between QT interval indices with cardiac autonomic neuropathy in diabetic patients: a case control study. Diabetol Metab Syndr 2020; 12:102. [PMID: 33292470 PMCID: PMC7678155 DOI: 10.1186/s13098-020-00609-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Long QT interval (QT) and abnormal QT dispersion (QTd) are associated with sudden death. The relationship between cardiac autonomic neuropathy (CAN) and QT indices in type 2 diabetic patients were investigated. METHODS Totally 130 diabetic subjects (mean age 50.87 ± 13.9 years) were included (70 individuals with and 60 individuals without CAN). All participants had sinus cardiac rhythm. The patients who had diseases or take drugs that cause orthostatic hypotension (OH), cardiac arrhythmia and QT prolongation were excluded. After interview and examination, standard and continuous ECG was taken in supine position with deep breathing and standing up position. CAN diagnosis was based on Ewing's tests. QT, QT corrected (QTc), minimum QT (QT min), maximum QT (QT max) and mean ± SD of QT (QT mean) and QTd were assessed from standard ECG. QTc was calculated by Bazett's formula from V2 lead. QTc > 440 ms in men and QTc > 460 ms in women and QTd > 80 ms were considered abnormal. RESULTS In patients with CAN, 21.5% were symptomatic. The prevalence of abnormal QTc and QTd was 11.3% and 28.7%, respectively. There was no significant difference between the patients with or without CAN in terms of long QTc and abnormal QTd. However, the mean ± SD of QT max, QT mean and QTd was higher in the patients with CAN (P value < 0.03). The used cut points for QTc and QTd have high specificity (79% for both) and low sensitivity (30% and 37%, respectively). To use QTc and QTd as screening test for CAN in T2DM patients, the cutoff points 380 and 550 ms are suggested, respectively. CONCLUSION The prevalence of asymptomatic CAN was 3.7 times that of symptomatic CAN. In patients with CAN the QT max, QT mean and QTd were higher than those without CAN. There was no association between CAN and long QTc and abnormal QTd.
Collapse
Affiliation(s)
- Maryam Vasheghani
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Sarvghadi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Beyranvand
- Department of Cardiology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Cardiology, Taleghani Educational Hospital, Tabnak St. Velenjak Region, Chamran High Way, 1985711151 Tehran , Iran
| | - Habib Emami
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zilliox LA, Russell JW. Is there cardiac autonomic neuropathy in prediabetes? Auton Neurosci 2020; 229:102722. [PMID: 33011523 DOI: 10.1016/j.autneu.2020.102722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 02/09/2023]
Abstract
Although there is considerably more data showing an association between type 2 diabetes mellitus (T2DM) and autonomic neuropathy, accumulating evidence indicates that cardiovascular autonomic neuropathy (CAN) is common in persons with impaired glucose tolerance (IGT). Furthermore, CAN may occur early after a metabolic insult and obesity, especially among mean, and seems to play an important role in the early pathogenesis of CAN. Autonomic symptoms are common in subjects with IGT. In addition to defects in CAN, in subjects with IGT, there is impaired sudomotor function and abnormalities of endothelial peripheral vasoreactivity. At the present time, the only interventions that may be effective in preventing or reversing IGT associated autonomic neuropathy are lifestyle improvement. These include a tailored diet and exercise program. Other approaches that may be beneficial include modulation of oxidative stress and improvement of metabolic regulation in subjects with IGT. Interventions are most likely to be effective early in the course of disease and therefore it is extremely important to have early diagnosis of IGT and autonomic neuropathy.
Collapse
Affiliation(s)
- Lindsay A Zilliox
- Department of Neurology, University of Maryland and Maryland VA Healthcare System, Baltimore, MD, United States of America
| | - James W Russell
- Department of Neurology, University of Maryland and Maryland VA Healthcare System, Baltimore, MD, United States of America.
| |
Collapse
|
10
|
Baczkó I, Hornyik T, Brunner M, Koren G, Odening KE. Transgenic Rabbit Models in Proarrhythmia Research. Front Pharmacol 2020; 11:853. [PMID: 32581808 PMCID: PMC7291951 DOI: 10.3389/fphar.2020.00853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-induced proarrhythmia constitutes a potentially lethal side effect of various drugs. Most often, this proarrhythmia is mechanistically linked to the drug's potential to interact with repolarizing cardiac ion channels causing a prolongation of the QT interval in the ECG. Despite sophisticated screening approaches during drug development, reliable prediction of proarrhythmia remains very challenging. Although drug-induced long-QT-related proarrhythmia is often favored by conditions or diseases that impair the individual's repolarization reserve, most cellular, tissue, and whole animal model systems used for drug safety screening are based on normal, healthy models. In recent years, several transgenic rabbit models for different types of long QT syndromes (LQTS) with differences in the extent of impairment in repolarization reserve have been generated. These might be useful for screening/prediction of a drug's potential for long-QT-related proarrhythmia, particularly as different repolarizing cardiac ion channels are impaired in the different models. In this review, we summarize the electrophysiological characteristics of the available transgenic LQTS rabbit models, and the pharmacological proof-of-principle studies that have been performed with these models—highlighting the advantages and disadvantages of LQTS models for proarrhythmia research. In the end, we give an outlook on potential future directions and novel models.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Comparison of QT interval variability of coronary patients without myocardial infarction with that of patients with old myocardial infarction. Comput Biol Med 2019; 113:103396. [PMID: 31446319 DOI: 10.1016/j.compbiomed.2019.103396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND The significant association of myocardial ischemia with elevated QT interval variability (QTV) has been reported in myocardial infarction (MI) patients. However, the influence of the time course of MI on QTV has not been investigated systematically. METHOD Short-term QT and RR interval time series were constructed from the 5 min electrocardiograms of 49 coronary patients without MI and 26 patients with old MI (OMI). The QTV, heart rate variability (HRV), and QT-RR coupling of the two groups were analyzed using various time series analysis tools in the time- and frequency-domains, as well as nonlinear dynamics. RESULTS Nearly all of the tested QTV indices for coronary patients with OMI were higher than those for patients without MI. However, no significant differences were found between the two groups in any of the variables employed to assess the HRV and QT-RR coupling. All of the markers that showed statistical significances in univariate analyses still possessed the capabilities of distinguishing between the two groups even after adjusting for studied baseline characteristics, including the coronary atherosclerotic burden. CONCLUSIONS The results suggested that the QTV increased in coronary patients with OMI compared to those without MI, which might reflect the influence of post-MI remodeling on the beat-to-beat temporal variability of ventricular repolarization. The non-significant differences in the HRV and QT-RR couplings could indicate that there were no differences in the modulation of the autonomic nervous system and interaction of QT with the RR intervals between the two groups.
Collapse
|
12
|
Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy. Endocr Rev 2019; 40:153-192. [PMID: 30256929 DOI: 10.1210/er.2018-00107] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy, with its major clinical sequels, notably neuropathic pain, foot ulcers, and autonomic dysfunction, is associated with substantial morbidity, increased risk of mortality, and reduced quality of life. Despite its major clinical impact, diabetic neuropathy remains underdiagnosed and undertreated. Moreover, the evidence supporting a benefit for causal treatment is weak at least in patients with type 2 diabetes, and current pharmacotherapy is largely limited to symptomatic treatment options. Thus, a better understanding of the underlying pathophysiology is mandatory for translation into new diagnostic and treatment approaches. Improved knowledge about pathogenic pathways implicated in the development of diabetic neuropathy could lead to novel diagnostic techniques that have the potential of improving the early detection of neuropathy in diabetes and prediabetes to eventually embark on new treatment strategies. In this review, we first provide an overview on the current clinical aspects and illustrate the pathogenetic concepts of (pre)diabetic neuropathy. We then describe the biomarkers emerging from these concepts and novel diagnostic tools and appraise their utility in the early detection and prediction of predominantly distal sensorimotor polyneuropathy. Finally, we discuss the evidence for and limitations of the current and novel therapy options with particular emphasis on lifestyle modification and pathogenesis-derived treatment approaches. Altogether, recent years have brought forth a multitude of emerging biomarkers reflecting different pathogenic pathways such as oxidative stress and inflammation and diagnostic tools for an early detection and prediction of (pre)diabetic neuropathy. Ultimately, these insights should culminate in improving our therapeutic armamentarium against this common and debilitating or even life-threatening condition.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Center, Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
14
|
Association between nephropathy and QT dispersion in type 2 diabetic patients. JOURNAL OF SURGERY AND MEDICINE 2018. [DOI: 10.28982/josam.465499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Li Y, Li P, Wang X, Karmakar C, Liu C, Liu C. Short-term QT interval variability in patients with coronary artery disease and congestive heart failure: a comparison with healthy control subjects. Med Biol Eng Comput 2018; 57:389-400. [PMID: 30143993 DOI: 10.1007/s11517-018-1870-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 07/02/2018] [Indexed: 02/01/2023]
Abstract
This study aimed to test how different QT interval variability (QTV) indices change in patients with coronary artery disease (CAD) and congestive heart failure (CHF). Twenty-nine healthy volunteers, 29 age-matched CAD patients, and 20 age-matched CHF patients were studied. QT time series were derived from 5-min resting lead-II electrocardiogram (ECG). Time domain indices [mean, SD, and QT variability index (QTVI)], frequency-domain indices (LF and HF), and nonlinear indices [sample entropy (SampEn), permutation entropy (PE), and dynamical patterns] were calculated. In order to account for possible influence of heart rate (HR) on QTV, all the calculations except QTVI were repeated on HR-corrected QT time series (QTc) using three correction methods (i.e., Bazett, Fridericia, and Framingham method). Results showed that CHF patients exhibited increased mean, increased SD, increased LF and HF, decreased T-wave amplitude, increased QTVI, and decreased PE, while showed no significant changes in SampEn. Interestingly, CHF patients also showed significantly changed distribution of the dynamical patterns with less monotonously changing patterns while more fluctuated patterns. In CAD group, only QTVI was found significantly increased as compared with healthy controls. Results after HR correction were in common with those before HR correction except for QTc based on Bazett correction. Graphical abstract Fig. The framework of this paper. The arrows show the sequential analysis of the data.
Collapse
Affiliation(s)
- Yang Li
- School of Control Science and Engineering, Shandong University, Jinan, People's Republic of China
| | - Peng Li
- School of Control Science and Engineering, Shandong University, Jinan, People's Republic of China
| | - Xinpei Wang
- School of Control Science and Engineering, Shandong University, Jinan, People's Republic of China
| | - Chandan Karmakar
- School of Information Technology, Deakin University, Melbourne, VIC, Australia
| | - Changchun Liu
- School of Control Science and Engineering, Shandong University, Jinan, People's Republic of China.
| | - Chengyu Liu
- School of Instrument Science and Engineering, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Affiliation(s)
- Kalliopi Pafili
- 1 Second Department of Internal Medicine, Diabetes Centre, Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Papanas
- 1 Second Department of Internal Medicine, Diabetes Centre, Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dan Ziegler
- 2 Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,3 Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
17
|
Circadian pattern of short-term variability of the QT-interval in primary prevention ICD patients - EU-CERT-ICD methodological pilot study. PLoS One 2017; 12:e0183199. [PMID: 28827816 PMCID: PMC5565185 DOI: 10.1371/journal.pone.0183199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/31/2017] [Indexed: 01/26/2023] Open
Abstract
Objective Short-term variability of the QT-interval (STV-QT) was shown to be associated with an increased risk of ventricular arrhythmias. We aimed at investigating (a) whether STV-QT exhibits circadian pattern, and (b) whether such pattern differs between patients with high and low arrhythmia risk. Methods As part of the ongoing EU-CERT-ICD study, 24h high resolution digital ambulatory 12-lead Holter recordings are collected prior to ICD implantation for primary prophylactic indication. Presently available patients were categorized based on their arrhythmia score (AS), a custom-made weighted score of the number of arrhythmic events on the recording. STV-QT was calculated every hour in 30 patients of which 15 and 15 patients had a high and a low AS, respectively. Results The overall dynamicity of STV-QT showed high intra- and inter-individual variability with different circadian patterns associated with low and high AS. High AS patients showed a prominent peak both at 08:00 and 18:00. At these times, STV-QT was significantly higher in the high AS patients compared to the low AS patients (1.22ms±0.55ms vs 0.60ms±0.24ms at 08:00 and 1.12ms±0.39ms vs 0.64ms±0.29ms at 18:00, both p < 0.01). Conclusion In patients with high AS, STV-QT peaks in the early morning and late afternoon. This potentially reflects increased arrhythmia risk at these times. Prospective STV-QT determination at these times might thus be more sensitive to identify patients at high risk of ventricular arrhythmias.
Collapse
|