1
|
Wang Y, Xiao M, Cai F, Li Y, Shi T, Zhou X, Tian S, Huang D. Roxadustat ameliorates vascular calcification in CKD rats by regulating HIF-2α/HIF-1α. ENVIRONMENTAL TOXICOLOGY 2024; 39:2363-2373. [PMID: 38156404 DOI: 10.1002/tox.24116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD). VC is a gene-regulated process similar to osteogenic differentiation. There are still no convincing schemes to prevent and reduce the development of VC. It has been reported that hypoxia-inducing factor 1α (HIF-1α) and endothelin-1(ET-1) are related to VC. In this study, we found that the expression of ET-1 and HIF-1α was enhanced after VC, the interaction between HIF-1α and ET-1 was confirmed by CO-IP and luciferase experiments. We found that ET-1 was an upregulated differential gene of calcified vascular smooth muscle cells (VSMCs) through gene sequencing. However, hypoxia-inducing factor 2α (HIF-2α) and HIF-1α have antagonistic effects on each other. HIF-1α is a pro-inflammatory cytokine, and HIF-2α can improve inflammation and fibrosis. Roxadustat, as a selective PHD3 inhibitor, preferentially activates HIF-2α. It is still unclear whether roxadustat improves VC in CKD by regulating the expression of HIF-2α/HIF-1α. Alizarin red staining and western blot as well as immunohistochemical results showed that roxadustat could significantly reduce the degree of vascular and VSMCs calcification in CKD rats. Serum HIF-1α and ET-1 were significantly decreased after roxadustat treatment. In addition, western blot results showed that roxadustat could decrease the expression of HIF-1α and ET-1 in vascular tissues and calcified VSMC, but HIF-2α expression significantly increased. Interestingly, our study confirmed that activation of HIF-1α or inhibition of HIF-2α reversed the ameliorating effect of roxadustat on VC, proving that the effect mediated by roxadustat is HIF-2α/HIF-1α dependent. We have demonstrated for the first time that roxadustat improves VC in CKD rats by regulating HIF-2α/HIF-1α, thus providing a new idea for the application of roxadustat in VC of CKD.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Hemodialysis, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Min Xiao
- Department of Clinical Laboratory, Strategic Support Force Medical Center, Beijing, China
| | - Feng Cai
- Department of Scientific Research, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Yang Li
- Department of Nephrology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Tianli Shi
- Department of Nephrology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Xiaoyan Zhou
- Department of Hemodialysis, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Shuhong Tian
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou, China
| | - Denggao Huang
- Department of Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|
2
|
Jin J, Cheng M, Wu X, Zhang H, Zhang D, Liang X, Qian Y, Guo L, Zhang S, Bai Y, Xu J. Circulating miR-129-3p in combination with clinical factors predicts vascular calcification in hemodialysis patients. Clin Kidney J 2024; 17:sfae038. [PMID: 38524234 PMCID: PMC10960567 DOI: 10.1093/ckj/sfae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Indexed: 03/26/2024] Open
Abstract
Background Vascular calcification (VC) commonly occurs and seriously increases the risk of cardiovascular events and mortality in patients with hemodialysis. For optimizing individual management, we will develop a diagnostic multivariable prediction model for evaluating the probability of VC. Methods The study was conducted in four steps. First, identification of miRNAs regulating osteogenic differentiation of vascular smooth muscle cells (VSMCs) in calcified condition. Second, observing the role of miR-129-3p on VC in vitro and the association between circulating miR-129-3p and VC in hemodialysis patients. Third, collecting all indicators related to VC as candidate variables, screening predictors from the candidate variables by Lasso regression, developing the prediction model by logistic regression and showing it as a nomogram in training cohort. Last, verifying predictive performance of the model in validation cohort. Results In cell experiments, miR-129-3p was found to attenuate vascular calcification, and in human, serum miR-129-3p exhibited a negative correlation with vascular calcification, suggesting that miR-129-3p could be one of the candidate predictor variables. Regression analysis demonstrated that miR-129-3p, age, dialysis duration and smoking were valid factors to establish the prediction model and nomogram for VC. The area under receiver operating characteristic curve of the model was 0.8698. The calibration curve showed that predicted probability of the model was in good agreement with actual probability and decision curve analysis indicated better net benefit of the model. Furthermore, internal validation through bootstrap process and external validation by another independent cohort confirmed the stability of the model. Conclusion We build a diagnostic prediction model and present it as an intuitive tool based on miR-129-3p and clinical indicators to evaluate the probability of VC in hemodialysis patients, facilitating risk stratification and effective decision, which may be of great importance for reducing the risk of serious cardiovascular events.
Collapse
Affiliation(s)
- Jingjing Jin
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| | - Meijuan Cheng
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| | - Xueying Wu
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| | - Haixia Zhang
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| | - Dongxue Zhang
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| | - Xiangnan Liang
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| | - Yuetong Qian
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| | - Liping Guo
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| | - Shenglei Zhang
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| | - Yaling Bai
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| | - Jinsheng Xu
- Departments of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, PR China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, PR China
| |
Collapse
|
3
|
Zaslow SJ, Oliveira-Paula GH, Chen W. Magnesium and Vascular Calcification in Chronic Kidney Disease: Current Insights. Int J Mol Sci 2024; 25:1155. [PMID: 38256228 PMCID: PMC10816532 DOI: 10.3390/ijms25021155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Magnesium (Mg) plays crucial roles in multiple essential biological processes. As the kidneys are the primary organ responsible for maintaining the blood concentration of Mg, people with chronic kidney disease (CKD) may develop disturbances in Mg. While both hyper- and hypomagnesemia may lead to adverse effects, the consequences associated with hypomagnesemia are often more severe and lasting. Importantly, observational studies have shown that CKD patients with hypomagnesemia have greater vascular calcification. Vascular calcification is accelerated and contributes to a high mortality rate in the CKD population. Both in vitro and animal studies have demonstrated that Mg protects against vascular calcification via several potential mechanisms, such as inhibiting the formation of both hydroxyapatite and pathogenic calciprotein particles as well as limiting osteogenic differentiation, a process in which vascular smooth muscle cells in the media layer of the arteries transform into bone-like cells. These preclinical findings have led to several important clinical trials that have investigated the effects of Mg supplementation on vascular calcification in people with CKD. Interestingly, two major clinical studies produced contradictory findings, resulting in a state of equipoise. This narrative review provides an overview of our current knowledge in the renal handling of Mg in health and CKD and the underlying mechanisms by which Mg may protect against vascular calcification. Lastly, we evaluate the strength of evidence from clinical studies on the efficacy of Mg supplementation and discuss future research directions.
Collapse
Affiliation(s)
- Shari J. Zaslow
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gustavo H. Oliveira-Paula
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Chen
- Department of Medicine, Nephrology Division, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Terpe P, Ruhs S, Dubourg V, Bucher M, Gekle M. The synergism of cytosolic acidosis and reduced NAD +/NADH ratio is responsible for lactic acidosis-induced vascular smooth muscle cell impairment in sepsis. J Biomed Sci 2024; 31:3. [PMID: 38195466 PMCID: PMC10775599 DOI: 10.1186/s12929-023-00992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND During sepsis, serve vascular dysfunctions lead to life-threatening multiple organ failure, due to vascular smooth muscle cells (VSMC) impairments, resulting in vasoplegia, hypotension and hypoperfusion. In addition, septic patients have an altered cell metabolism that leads to lactic acidosis. Septic patients suffering from lactic acidosis have a high risk of mortality. In addition, septic survivors are at risk of secondary vascular disease. The underlying mechanisms of whether and how lactic acidosis leads to the changes in VSMCs is not well understood. The aim of this study was to comprehensively investigate the effect of lactic acidosis on VSMCs and additionally compare the effects with those induced by pure acidosis and sodium lactate. METHODS Primary human aortic smooth muscle cells (HAoSMCs) were treated for 48 h with lactic acidosis (LA_pH 6.8), hydrochloric acid (HCl_pH 6.8), sodium lactate (Na+-lactate_pH 7.4) and the respective controls (ctrl._pH 7.4; hyperosmolarity control: mannitol_pH 7.4) and comparatively analyzed for changes in (i) transcriptome, (ii) energy metabolism, and (iii) phenotype. RESULTS Both types of acidosis led to comparable and sustained intracellular acidification without affecting cell viability. RNA sequencing and detailed transcriptome analysis revealed more significant changes for lactic acidosis than for hydrochloric acidosis, with lactate being almost ineffective, suggesting qualitative and quantitative synergism of acidosis and lactate. Bioinformatic predictions in energy metabolism and phenotype were confirmed experimentally. Lactic acidosis resulted in strong inhibition of glycolysis, glutaminolysis, and altered mitochondrial respiration which reduced cellular ATP content, likely due to increased TXNIP expression and altered NAD+/NADH ratio. Hydrochloric acidosis induced significantly smaller effects without changing the NAD+/NADH ratio, with the ATP content remaining constant. These metabolic changes led to osteo-/chondrogenic/senescent transdifferentiation of VSMCs, with the effect being more pronounced in lactic acidosis than in pure acidosis. CONCLUSIONS Overall, lactic acidosis exerted a much stronger effect on energy metabolism than pure acidosis, whereas lactate had almost no effect, reflecting the qualitative and quantitative synergism of acidosis and lactate. As a consequence, lactic acidosis may lead to acute functional impairments of VSMC, sustained perturbations of the transcriptome and cellular dedifferentiation. Moreover, these effects may contribute to the acute and prolonged vascular pathomechanisms in septic patients.
Collapse
Affiliation(s)
- Philipp Terpe
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany
| | - Stefanie Ruhs
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Michael Bucher
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| |
Collapse
|
5
|
Regidor PA, Mueller A, Mayr M. Pharmacological and metabolic effects of drospirenone as a progestin-only pill compared to combined formulations with estrogen. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057221147388. [PMID: 36744531 PMCID: PMC9905034 DOI: 10.1177/17455057221147388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The spironolactone derivative drospirenone is combined with ethinylestradiol or estetrol in combined oral contraceptives. Formulations with 17-β-estradiol are used to treat climacteric symptoms. A drospirenone-only formulation has been introduced for contraception. Here, the pharmacological properties of drospirenone, the impact of the different formulations on metabolic and laboratory parameters, and the resulting clinical implications are reviewed. Ethinylestradiol, an inhibitor of CYP metabolic enzymes, changes the pharmacokinetics of drospirenone, leading to a higher drospirenone exposure with ethinylestradiol/drospirenone compared to the drospirenone-only preparation. In addition, several metabolic alterations have been described. The impact of estetrol is less pronounced, and for 17-β-estradiol/drospirenone and drospirenone-only, decreased triglyceride and cholesterol levels were observed. Ethinylestradiol induces various pro-coagulatory factors, leading to hypercoagulability. The effect is significantly reduced with estetrol, and no influence was observed with the drospirenone-only preparation. The anti-mineralocorticoid activity of drospirenone seems to positively counteract the renin-angiotensin-aldosterone-system-activating action of ethinylestradiol. There is no influence on blood pressure with ethinylestradiol/drospirenone and estetrol/drospirenone formulations, while in clinical trials, a reduction has been observed with 17-β-estradiol/drospirenone and drospirenone-only. Anti-aldosterone activity via non-renal mineralocorticoid receptors is associated with cardiovascular health, while interactions with parathyroid hormone signaling impact bone structure and vascular calcification. Though the clinical relevance is unclear for drospirenone, data in this context are reviewed. To sum up, the advantages of drospirenone in hormonal contraception and treatment of menopausal symptoms have been demonstrated for all the formulations described here. Combination with estrogen confers benefits and risks, which must be considered.
Collapse
Affiliation(s)
- Pedro-Antonio Regidor
- Pedro-Antonio Regidor, Exeltis Germany GmbH, Adalperostraße 84, 85737 Ismaning, Germany.
| | | | | |
Collapse
|
6
|
Henze LA, Estepa M, Pieske B, Lang F, Eckardt KU, Alesutan I, Voelkl J. Zinc Ameliorates the Osteogenic Effects of High Glucose in Vascular Smooth Muscle Cells. Cells 2021; 10:cells10113083. [PMID: 34831306 PMCID: PMC8623153 DOI: 10.3390/cells10113083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
In diabetic patients, medial vascular calcification is common and associated with increased cardiovascular mortality. Excessive glucose concentrations can activate the nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and trigger pro-calcific effects in vascular smooth muscle cells (VSMCs), which may actively augment vascular calcification. Zinc is able to mitigate phosphate-induced VSMC calcification. Reduced serum zinc levels have been reported in diabetes mellitus. Therefore, in this study the effects of zinc supplementation were investigated in primary human aortic VSMCs exposed to excessive glucose concentrations. Zinc treatment was found to abrogate the stimulating effects of high glucose on VSMC calcification. Furthermore, zinc was found to blunt the increased expression of osteogenic and chondrogenic markers in high glucose-treated VSMCs. High glucose exposure was shown to activate NF-kB in VSMCs, an effect that was blunted by additional zinc treatment. Zinc was further found to increase the expression of TNFα-induced protein 3 (TNFAIP3) in high glucose-treated VSMCs. The silencing of TNFAIP3 was shown to abolish the protective effects of zinc on high glucose-induced NF-kB-dependent transcriptional activation, osteogenic marker expression, and the calcification of VSMCs. Silencing of the zinc-sensing receptor G protein-coupled receptor 39 (GPR39) was shown to abolish zinc-induced TNFAIP3 expression and the effects of zinc on high glucose-induced osteogenic marker expression. These observations indicate that zinc may be a protective factor during vascular calcification in hyperglycemic conditions.
Collapse
Affiliation(s)
- Laura A. Henze
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.-U.E.); (J.V.)
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- Correspondence: ; Tel.: +43-732-2468-8990
| | - Jakob Voelkl
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.-U.E.); (J.V.)
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| |
Collapse
|
7
|
Gergei I, Zheng J, Andlauer TFM, Brandenburg V, Mirza-Schreiber N, Müller-Myhsok B, Krämer BK, Richard D, Falk L, Movérare-Skrtic S, Ohlsson C, Smith GD, März W, Voelkl J, Tobias JH. GWAS META-analysis followed by MENDELIAN randomisation revealed potential control mechanisms for circulating α-klotho levels. Hum Mol Genet 2021; 31:792-802. [PMID: 34542150 PMCID: PMC8895756 DOI: 10.1093/hmg/ddab263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/08/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The protein α-Klotho acts as transmembrane the co-receptor for fibroblast growth factor 23 (FGF-23) and is a key regulator of phosphate homeostasis. However, α-Klotho also exists in a circulating form, with pleiotropic, but incompletely understood functions and regulation. Therefore, we undertook a GWAS meta-analysis followed by Mendelian randomisation (MR) of circulating α-Klotho levels. METHODS Plasma α-Klotho levels were measured by ELISA in the LURIC and ALSPAC (mothers) cohorts, followed by a GWAS meta-analysis in 4376 individuals across the two cohorts. RESULTS Six signals at five loci were associated with circulating α-Klotho levels at genome-wide significance (p < 5 × 10-8), namely ABO, KL, FGFR1, and two post-translational modification genes, B4GALNT3 and CHST9. Together, these loci explained > 9% of the variation in circulating α-Klotho levels. MR analyses revealed no causal relationships between α-Klotho and renal function, FGF-23-dependent factors such as vitamin D and phosphate levels, or bone mineral density. The screening for genetic correlations with other phenotypes, followed by targeted MR suggested causal effects of liability of Crohn's disease risk [IVW beta = 0.059 (95% CI 0.026, 0.093)] and low-density lipoprotein cholesterol (LDL-C) levels [-0.198, (-0.332, -0.063)] on α-Klotho. CONCLUSIONS Our GWAS findings suggest that two enzymes involved in post-translational modification, B4GALNT3 and CHST9, contribute to genetic influences on α-Klotho levels, presumably by affecting protein turnover and stability. Subsequent evidence from MR analyses on α-Klotho levels suggest regulation by mechanisms besides phosphate-homeostasis and raise the possibility of cross-talk with FGF19- and FGF21-dependent pathways, respectively.
Collapse
Affiliation(s)
- Ingrid Gergei
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Therapeutic Area Cardiovascular Medicine, Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, United Kingdom.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, United Kingdom
| | - Till F M Andlauer
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bernhard K Krämer
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Richard
- Department of Human Evolutionary Biology, Harvard University, USA
| | - Louise Falk
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, United Kingdom
| | - Sofia Movérare-Skrtic
- University of Gothenburg, Sahlgrenska Osteoporosis Centre, CBAR, Institute of Medicine, Department of Internal Medicine and Clinical Nutrition, Gothenburg, Sweden
| | - Claes Ohlsson
- University of Gothenburg, Sahlgrenska Osteoporosis Centre, CBAR, Institute of Medicine, Department of Internal Medicine and Clinical Nutrition, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, United Kingdom.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, United Kingdom
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jonathan H Tobias
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, United Kingdom.,Musculoskeletal Research Unit, Translational HeaalthLevel 1 Learning and Research Building, Southmead Hospital, Bristol, United Kingdom
| |
Collapse
|
8
|
Acid sphingomyelinase promotes SGK1-dependent vascular calcification. Clin Sci (Lond) 2021; 135:515-534. [PMID: 33479769 PMCID: PMC7859357 DOI: 10.1042/cs20201122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
In chronic kidney disease (CKD), hyperphosphatemia is a key factor promoting medial vascular calcification, a common complication associated with cardiovascular events and high mortality. Vascular calcification involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs), but the complex signaling events inducing pro-calcific pathways are incompletely understood. The present study investigated the role of acid sphingomyelinase (ASM)/ceramide as regulator of VSMC calcification. In vitro, both, bacterial sphingomyelinase and phosphate increased ceramide levels in VSMCs. Bacterial sphingomyelinase as well as ceramide supplementation stimulated osteo-/chondrogenic transdifferentiation during control and high phosphate conditions and augmented phosphate-induced calcification of VSMCs. Silencing of serum- and glucocorticoid-inducible kinase 1 (SGK1) blunted the pro-calcific effects of bacterial sphingomyelinase or ceramide. Asm deficiency blunted vascular calcification in a cholecalciferol-overload mouse model and ex vivo isolated-perfused arteries. In addition, Asm deficiency suppressed phosphate-induced osteo-/chondrogenic signaling and calcification of cultured VSMCs. Treatment with the functional ASM inhibitors amitriptyline or fendiline strongly blunted pro-calcific signaling pathways in vitro and in vivo. In conclusion, ASM/ceramide is a critical upstream regulator of vascular calcification, at least partly, through SGK1-dependent signaling. Thus, ASM inhibition by repurposing functional ASM inhibitors to reduce the progression of vascular calcification during CKD warrants further study.
Collapse
|
9
|
Epstein M, Freundlich M. The intersection of Mineralocorticoid Receptor (MR) activation and the FGF23 - Klotho cascade. A Duopoly that promotes renal and cardiovascular injury. Nephrol Dial Transplant 2021; 37:211-221. [PMID: 34459924 DOI: 10.1093/ndt/gfab254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
The nexus of CKD and cardiovascular disease (CVD) amplifies the morbidity and mortality of CKD, emphasizing the need for defining and establishing therapeutic initiatives to modify and abrogate the progression of CKD and concomitant CV risks. In addition to the traditional CV risk factors, disturbances of mineral metabolism are specific risk factors that contribute to the excessive CV mortality in patients with CKD. These risk factors include dysregulations of circulating factors that modulate phosphate metabolism including fibroblast growth factor 23 (FGF23) and soluble Klotho. Reduced circulating levels and suppressed renal klotho expression may be associated with adverse outcomes in CKD patients. While elevated circulating concentrations or locally produced FGF23 in the strained heart exert pro-hypertrophic mechanisms on the myocardium, Klotho attenuates tissue fibrosis, progression of CKD, cardiomyopathy, endothelial dysfunction, vascular stiffness, and vascular calcification. Mineralocorticoid receptor (MR) activation in non-classical targets, mediated by aldosterone and other ligands, amplifies CVD in CKD. In concert, we detail how the interplay of elevated FGF23, activation of the MR, and concomitant reductions of circulating Klotho in CKD, may potentiate each other's deleterious effects on kidney and the heart, thereby contributing to the initiation and progression of kidney and cardiac functional deterioration, acting through multipronged albeit complementary mechanistic pathways.
Collapse
Affiliation(s)
- Murray Epstein
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Freundlich
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Millán Á, Lanzer P, Sorribas V. The Thermodynamics of Medial Vascular Calcification. Front Cell Dev Biol 2021; 9:633465. [PMID: 33937234 PMCID: PMC8080379 DOI: 10.3389/fcell.2021.633465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Medial vascular calcification (MVC) is a degenerative process that involves the deposition of calcium in the arteries, with a high prevalence in chronic kidney disease (CKD), diabetes, and aging. Calcification is the process of precipitation largely of calcium phosphate, governed by the laws of thermodynamics that should be acknowledged in studies of this disease. Amorphous calcium phosphate (ACP) is the key constituent of early calcifications, mainly composed of Ca2+ and PO4 3- ions, which over time transform into hydroxyapatite (HAP) crystals. The supersaturation of ACP related to Ca2+ and PO4 3- activities establishes the risk of MVC, which can be modulated by the presence of promoter and inhibitor biomolecules. According to the thermodynamic parameters, the process of MVC implies: (i) an increase in Ca2+ and PO4 3- activities (rather than concentrations) exceeding the solubility product at the precipitating sites in the media; (ii) focally impaired equilibrium between promoter and inhibitor biomolecules; and (iii) the progression of HAP crystallization associated with nominal irreversibility of the process, even when the levels of Ca2+ and PO4 3- ions return to normal. Thus, physical-chemical processes in the media are fundamental to understanding MVC and represent the most critical factor for treatments' considerations. Any pathogenetical proposal must therefore comply with the laws of thermodynamics and their expression within the medial layer.
Collapse
Affiliation(s)
- Ángel Millán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Peter Lanzer
- Division of Cardiovascular Disease, Department of Internal Medicine, Health Care Center Bitterfeld, Bitterfeld-Wolfen gGmbH, Bitterfeld-Wolfen, Germany
| | - Víctor Sorribas
- Molecular Toxicology Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
11
|
Role of SGK1 in the Osteogenic Transdifferentiation and Calcification of Vascular Smooth Muscle Cells Promoted by Hyperglycemic Conditions. Int J Mol Sci 2020; 21:ijms21197207. [PMID: 33003561 PMCID: PMC7583813 DOI: 10.3390/ijms21197207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
In diabetes mellitus, hyperglycemia promotes the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) to enhance medial vascular calcification, a common complication strongly associated with cardiovascular disease and mortality. The mechanisms involved are, however, still poorly understood. Therefore, the present study explored the potential role of serum- and glucocorticoid-inducible kinase 1 (SGK1) during vascular calcification promoted by hyperglycemic conditions. Exposure to high-glucose conditions up-regulated the SGK1 expression in primary human aortic VSMCs. High glucose increased osteogenic marker expression and activity and, thus, promoted the osteogenic transdifferentiation of VSMCs, effects significantly suppressed by additional treatment with the SGK1 inhibitor EMD638683. Moreover, high glucose augmented the mineralization of VSMCs in the presence of calcification medium, effects again significantly reduced by SGK1 inhibition. Similarly, SGK1 knockdown blunted the high glucose-induced osteogenic transdifferentiation of VSMCs. The osteoinductive signaling promoted by high glucose required SGK1-dependent NF-kB activation. In addition, advanced glycation end products (AGEs) increased the SGK1 expression in VSMCs, and SGK1 inhibition was able to interfere with AGEs-induced osteogenic signaling. In conclusion, SGK1 is up-regulated and mediates, at least partly, the osteogenic transdifferentiation and calcification of VSMCs during hyperglycemic conditions. Thus, SGK1 inhibition may reduce the development of vascular calcification promoted by hyperglycemia in diabetes.
Collapse
|
12
|
Copur S, Sag AA, Afsar B, Rossignol P, Covic A, Kanbay M. Complications of metabolic acidosis and alkalinizing therapy in chronic kidney disease patients: a clinician-directed organ-specific primer. Int Urol Nephrol 2020; 52:2311-2320. [PMID: 32661618 DOI: 10.1007/s11255-020-02563-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023]
Abstract
Chronic kidney disease is prevalent, affecting more than one in ten adults. In this population, metabolic acidosis is considered a key underlying pathophysiological feature, tying together bone mineral disorders, sarcopenia, insulin resistance, vascular calcification, pro-inflammatory and pro-thrombotic states. This review aims to address the paucity of literature on alkalinizing agents, a promising treatment option that has known adverse effects.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, USA
| | - Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Patrick Rossignol
- Université de Lorraine, INSERM CIC-P 1433, CHRU de Nancy, INSERM U1116, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 34010, Istanbul, Turkey.
| |
Collapse
|
13
|
Alesutan I, Moritz F, Haider T, Shouxuan S, Gollmann-Tepeköylü C, Holfeld J, Pieske B, Lang F, Eckardt KU, Heinzmann SS, Voelkl J. Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells. J Mol Med (Berl) 2020; 98:985-997. [PMID: 32488546 PMCID: PMC7343738 DOI: 10.1007/s00109-020-01925-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Abstract In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor β-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to β-glycerophosphate. In VSMCs, β-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. β-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. β-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, β-glycerophosphate increased non-glycolytic acidification. β-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated β-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, β-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. Key messages β-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. β-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. β-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. β-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact β-glycerophosphate-induced VSMC calcification.
Electronic supplementary material The online version of this article (10.1007/s00109-020-01925-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, Germany. .,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | - Franco Moritz
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tatjana Haider
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Sun Shouxuan
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Can Gollmann-Tepeköylü
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Burkert Pieske
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Tubingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Sophie Heinzmann
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Zununi Vahed S, Mostafavi S, Hosseiniyan Khatibi SM, Shoja MM, Ardalan M. Vascular Calcification: An Important Understanding in Nephrology. Vasc Health Risk Manag 2020; 16:167-180. [PMID: 32494148 PMCID: PMC7229867 DOI: 10.2147/vhrm.s242685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular calcification (VC) is a life-threatening state in chronic kidney disease (CKD). High cardiovascular mortality and morbidity of CKD cases may root from medial VC promoted by hyperphosphatemia. Vascular calcification is an active, highly regulated, and complex biological process that is mediated by genetics, epigenetics, dysregulated form of matrix mineral metabolism, hormones, and the activation of cellular signaling pathways. Moreover, gut microbiome as a source of uremic toxins (eg, phosphate, advanced glycation end products and indoxyl-sulfate) can be regarded as a potential contributor to VC in CKD. Here, an update on different cellular and molecular processes involved in VC in CKD is discussed to elucidate the probable therapeutic pathways in the future.
Collapse
Affiliation(s)
| | - Soroush Mostafavi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammadali M Shoja
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
15
|
An overview of the mechanisms in vascular calcification during chronic kidney disease. Curr Opin Nephrol Hypertens 2020; 28:289-296. [PMID: 30985336 DOI: 10.1097/mnh.0000000000000507] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) facilitates a unique environment to strongly accelerate vascular calcification - the pathological deposition of calcium-phosphate in the vasculature. These calcifications are associated with the excessive cardiovascular mortality of CKD patients. RECENT FINDINGS Vascular calcification is a multifaceted active process, mediated, at least partly, by vascular smooth muscle cells. These cells are able to transdifferentiate into cells with osteo/chondrogenic properties, which exert multiple effects to facilitate vascular tissue mineralization. As the understanding of the underlying pathophysiology increases, first therapeutic concepts begin to emerge. SUMMARY This brief review provides an overview on the so far known mechanisms involved in the initiation and progression of vascular calcification in CKD.
Collapse
|
16
|
Inhibition of vascular smooth muscle cell calcification by vasorin through interference with TGFβ1 signaling. Cell Signal 2019; 64:109414. [PMID: 31505229 DOI: 10.1016/j.cellsig.2019.109414] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
Elevated transforming growth factor β1 (TGFβ1) levels are frequently observed in chronic kidney disease (CKD) patients. TGFβ1 contributes to development of medial vascular calcification during hyperphosphatemia, a pathological process promoted by osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Vasorin is a transmembrane glycoprotein highly expressed in VSMCs, which is able to bind TGFβ to inhibit TGFβ signaling. Thus, the present study explored the effects of vasorin on osteo-/chondrogenic transdifferentiation and calcification of VSMCs. Primary human aortic smooth muscle cells (HAoSMCs) were treated with recombinant human TGFβ1 or β-glycerophosphate without or with recombinant human vasorin or vasorin gene silencing by siRNA. As a result, TGFβ1 down-regulated vasorin mRNA expression in HAoSMCs. Vasorin supplementation inhibited TGFβ1-induced pathway activation, SMAD2 phosphorylation and downstream target genes expression in HAoSMCs. Furthermore, treatment with exogenous vasorin blunted, while vasorin knockdown augmented TGFβ1-induced osteo-/chondrogenic transdifferentiation of HAoSMCs. In addition, phosphate down-regulated vasorin mRNA expression in HAoSMCs. Phosphate-induced TGFβ1 expression was not affected by addition of exogenous vasorin. Nonetheless, the phosphate-induced TGFβ1 signaling, osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs were all blunted by vasorin. Conversely, silencing of vasorin aggravated osteoinduction in HAoSMCs during high phosphate conditions. Aortic vasorin expression was reduced in the hyperphosphatemic klotho-hypomorphic mouse model of CKD-related vascular calcification. In conclusion, vasorin, which suppresses TGFβ1 signaling and protects against osteo-/chondrogenic transdifferentiation and calcification of VSMCs, is reduced by pro-calcifying conditions. Thus, vasorin is a novel key regulator of VSMC calcification and may represent a potential therapeutic target for vascular calcification during CKD.
Collapse
|
17
|
Would acetazolamide inhibit progression of atheromatous vascular calcification? Med Hypotheses 2019; 132:109354. [PMID: 31421415 DOI: 10.1016/j.mehy.2019.109354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Vascular calcification is a recognised source of morbidity among mid-age and elderly subjects. Its development follows classical mineralisation pathways, inhibited by acidosis. It is known that the final mechanism of tissue mineralization involves three processes, all of which are highly pH dependent. Calcium interacts with phosphate in its trivalent form, but this step is inhibited by pyrophosphate, itself a source of phosphate when hydrolysed by alkaline phosphatase. Separately, matrix vesicles create nucleation sites and may indirectly disrupt vascular smooth muscle cells. Metabolic acidosis acts at every point to delay mineralization. The diuretic acetazolamide creates a sustained mild acidosis with some phosphate loss and, though usually ineffective in the experimental model, has been used with success in certain clinical conditions. We suggest that acetazolamide, well studied and tolerated, might inhibit progression of vascular calcification in subjects at risk through its dual action of lowering tissue pH and local phosphate concentration.
Collapse
|
18
|
Ma K, Liu P, Al-Maghout T, Sukkar B, Cao H, Voelkl J, Alesutan I, Pieske B, Lang F. Phosphate-induced ORAI1 expression and store-operated Ca 2+ entry in aortic smooth muscle cells. J Mol Med (Berl) 2019; 97:1465-1475. [PMID: 31385016 DOI: 10.1007/s00109-019-01824-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
Compromised renal phosphate elimination in chronic kidney disease (CKD) leads to hyperphosphatemia, which in turn triggers osteo-/chondrogenic signaling in vascular smooth muscle cells (VSMCs) and vascular calcification. Osteo-/chondrogenic transdifferentiation of VSMCs leads to upregulation of the transcription factors MSX2, CBFA1, and SOX9 as well as tissue-nonspecific alkaline phosphatase (ALPL) which fosters calcification by degrading the calcification inhibitor pyrophosphate. Osteo-/chondrogenic signaling in VSMCs involves the serum- and glucocorticoid-inducible kinase SGK1. As shown in other cell types, SGK1 is a powerful stimulator of ORAI1, a Ca2+-channel accomplishing store-operated Ca2+-entry (SOCE). ORAI1 is stimulated following intracellular store depletion by the Ca2+ sensor STIM1. The present study explored whether phosphate regulates ORAI1 and/or STIM1 expression and, thus, SOCE in VSMCs. To this end, primary human aortic smooth muscle cells (HAoSMCs) were exposed to the phosphate donor β-glycerophosphate. Transcript levels were estimated by qRT-PCR, protein abundance by western blotting, ALPL activity by colorimetry, calcification by alizarin red S staining, cytosolic Ca2+-concentration ([Ca2+]i) by Fura-2-fluorescence, and SOCE from increase of [Ca2+]i following re-addition of extracellular Ca2+ after store depletion with thapsigargin. As a result, β-glycerophosphate treatment increased ORAI1 and STIM1 transcript levels and protein abundance as well as SOCE in HAoSMCs. Additional treatment with ORAI1 inhibitor MRS1845 or SGK1 inhibitor GSK650394 virtually disrupted the effects of β-glycerophosphate on SOCE. Moreover, the β-glycerophosphate-induced MSX2, CBFA1, SOX9, and ALPL mRNA expression and activity in HAoSMCs were suppressed in the presence of the ORAI1 inhibitor and upon ORAI1 silencing. In conclusion, enhanced phosphate upregulates ORAI1 and STIM1 expression and store-operated Ca2+-entry, which participate in the orchestration of osteo-/chondrogenic signaling of VSMCs. KEY MESSAGES: • In aortic SMC, phosphate donor ß-glycerophosphate upregulates Ca2+ channel ORAI1. • In aortic SMC, ß-glycerophosphate upregulates ORAI1-activator STIM1. • In aortic SMC, ß-glycerophosphate upregulates store-operated Ca2+-entry (SOCE). • The effect of ß-glycerophosphate on SOCE is disrupted by ORAI1 inhibitor MRS1845. • Stimulation of osteogenic signaling is disrupted by MRS1845 and ORAI1 silencing.
Collapse
Affiliation(s)
- Ke Ma
- Department of Pharmacology & Experimental Therapy, University of Tübingen, 72076, Tübingen, Germany
| | - Ping Liu
- Department of Pharmacology & Experimental Therapy, University of Tübingen, 72076, Tübingen, Germany
| | - Tamer Al-Maghout
- Department of Pharmacology & Experimental Therapy, University of Tübingen, 72076, Tübingen, Germany
| | - Basma Sukkar
- Department of Pharmacology & Experimental Therapy, University of Tübingen, 72076, Tübingen, Germany
| | - Hang Cao
- Department of Pharmacology & Experimental Therapy, University of Tübingen, 72076, Tübingen, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040, Linz, Austria.,Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité University Medicine, Berlin, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040, Linz, Austria.,Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, University of Tübingen, Wilhelmstr. 56, 72074, Tübingen, Germany.
| |
Collapse
|
19
|
Henze LA, Luong TT, Boehme B, Masyout J, Schneider MP, Brachs S, Lang F, Pieske B, Pasch A, Eckardt KU, Voelkl J, Alesutan I. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. Aging (Albany NY) 2019; 11:5445-5462. [PMID: 31377747 PMCID: PMC6710049 DOI: 10.18632/aging.102130] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/25/2019] [Indexed: 05/01/2023]
Abstract
Medial vascular calcification occurs during the aging process and is strongly accelerated by chronic kidney disease (CKD). Elevated C-reactive protein (CRP) levels are associated with vascular calcification, cardiovascular events and mortality in CKD patients. CRP is an important promoter of vascular inflammation. Inflammatory processes are critically involved in initiation and progression of vascular calcification. Thus, the present study explored a possible impact of CRP on vascular calcification. We found that CRP promoted osteo-/chondrogenic transdifferentiation and aggravated phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of primary human aortic smooth muscle cells (HAoSMCs). These effects were paralleled by increased cellular oxidative stress and corresponding pro-calcific downstream-signaling. Antioxidants or p38 MAPK inhibition suppressed CRP-induced osteo-/chondrogenic signaling and mineralization. Furthermore, silencing of Fc fragment of IgG receptor IIa (FCGR2A) blunted the pro-calcific effects of CRP. Vascular CRP expression was increased in the klotho-hypomorphic mouse model of aging as well as in HAoSMCs during calcifying conditions. In conclusion, CRP augments osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells through mechanisms involving FCGR2A-dependent induction of oxidative stress. Thus, systemic inflammation may actively contribute to the progression of vascular calcification.
Collapse
MESH Headings
- Aging/metabolism
- Aging/pathology
- Animals
- C-Reactive Protein/metabolism
- Cell Transdifferentiation/physiology
- Cells, Cultured
- Chondrogenesis/physiology
- Disease Models, Animal
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Humans
- Klotho Proteins
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis/physiology
- Oxidative Stress
- RNA, Small Interfering/genetics
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Laura A. Henze
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
| | - Trang T.D. Luong
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
| | - Beate Boehme
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
| | - Jaber Masyout
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
| | - Markus P. Schneider
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sebastian Brachs
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin 10115, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Tübingen 72076, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin 13353, Germany
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
- Calciscon AG, 2560 Nidau-Biel, Switzerland
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
| |
Collapse
|
20
|
Voelkl J, Lang F, Eckardt KU, Amann K, Kuro-O M, Pasch A, Pieske B, Alesutan I. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cell Mol Life Sci 2019; 76:2077-2091. [PMID: 30887097 PMCID: PMC6502780 DOI: 10.1007/s00018-019-03054-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Medial vascular calcification has emerged as a putative key factor contributing to the excessive cardiovascular mortality of patients with chronic kidney disease (CKD). Hyperphosphatemia is considered a decisive determinant of vascular calcification in CKD. A critical role in initiation and progression of vascular calcification during elevated phosphate conditions is attributed to vascular smooth muscle cells (VSMCs), which are able to change their phenotype into osteo-/chondroblasts-like cells. These transdifferentiated VSMCs actively promote calcification in the medial layer of the arteries by producing a local pro-calcifying environment as well as nidus sites for precipitation of calcium and phosphate and growth of calcium phosphate crystals. Elevated extracellular phosphate induces osteo-/chondrogenic transdifferentiation of VSMCs through complex intracellular signaling pathways, which are still incompletely understood. The present review addresses critical intracellular pathways controlling osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification during hyperphosphatemia. Elucidating these pathways holds a significant promise to open novel therapeutic opportunities counteracting the progression of vascular calcification in CKD.
Collapse
MESH Headings
- Animals
- Calcium Phosphates/chemistry
- Calcium Phosphates/metabolism
- Cell Transdifferentiation
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Gene Expression Regulation
- Humans
- Hyperphosphatemia/complications
- Hyperphosphatemia/genetics
- Hyperphosphatemia/metabolism
- Hyperphosphatemia/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Osteoblasts/metabolism
- Osteoblasts/pathology
- RANK Ligand/genetics
- RANK Ligand/metabolism
- Receptor Activator of Nuclear Factor-kappa B/genetics
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/complications
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076, Tübingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Andreas Pasch
- Calciscon AG, Aarbergstrasse 5, 2560, Nidau-Biel, Switzerland
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
| |
Collapse
|
21
|
Schanstra JP, Luong TT, Makridakis M, Van Linthout S, Lygirou V, Latosinska A, Alesutan I, Boehme B, Schelski N, Von Lewinski D, Mullen W, Nicklin S, Delles C, Feuillet G, Denis C, Lang F, Pieske B, Bascands JL, Mischak H, Saulnier-Blache JS, Voelkl J, Vlahou A, Klein J. Systems biology identifies cytosolic PLA2 as a target in vascular calcification treatment. JCI Insight 2019; 4:125638. [PMID: 31092728 DOI: 10.1172/jci.insight.125638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/17/2019] [Indexed: 01/15/2023] Open
Abstract
Although cardiovascular disease (CVD) is the leading cause of morbimortality worldwide, promising new drug candidates are lacking. We compared the arterial high-resolution proteome of patients with advanced versus early-stage CVD to predict, from a library of small bioactive molecules, drug candidates able to reverse this disease signature. Of the approximately 4000 identified proteins, 100 proteins were upregulated and 52 were downregulated in advanced-stage CVD. Arachidonyl trifluoromethyl ketone (AACOCF3), a cytosolic phospholipase A2 (cPLA2) inhibitor was predicted as the top drug able to reverse the advanced-stage CVD signature. Vascular cPLA2 expression was increased in patients with advanced-stage CVD. Treatment with AACOCF3 significantly reduced vascular calcification in a cholecalciferol-overload mouse model and inhibited osteoinductive signaling in vivo and in vitro in human aortic smooth muscle cells. In conclusion, using a systems biology approach, we have identified a potentially new compound that prevented typical vascular calcification in CVD in vivo. Apart from the clear effect of this approach in CVD, such strategy should also be able to generate novel drug candidates in other complex diseases.
Collapse
Affiliation(s)
- Joost P Schanstra
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Trang Td Luong
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sophie Van Linthout
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Vasiliki Lygirou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Beate Boehme
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Nadeshda Schelski
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stuart Nicklin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Guylène Feuillet
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Colette Denis
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Florian Lang
- Department of Physiology I, University of Tubingen, Tubingen, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jean-Loup Bascands
- INSERM, U1188, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | | | - Jean-Sebastien Saulnier-Blache
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Julie Klein
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
22
|
SGK1-dependent stimulation of vascular smooth muscle cell osteo-/chondrogenic transdifferentiation by interleukin-18. Pflugers Arch 2019; 471:889-899. [PMID: 30706178 PMCID: PMC6533237 DOI: 10.1007/s00424-019-02256-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/13/2019] [Indexed: 01/18/2023]
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a key regulator of osteo-/chondrogenic transdifferentiation and subsequent calcification of vascular smooth muscle cells (VSMCs). The phenotypical transdifferentiation of VSMCs is associated with increased interleukin-18 (IL-18) levels and generalized inflammation. Therefore, the present study investigated the possible involvement of SGK1 in IL-18-induced vascular calcification. Experiments were performed in primary human aortic smooth muscle cells (HAoSMCs) treated with recombinant human IL-18 protein in control or high phosphate conditions and following SGK1 knockdown by siRNA or pharmacological inhibition of SGK1, PI3K, and PDK1. As a result, IL-18 treatment increased SGK1 mRNA and protein expression in HAoSMCs. IL-18 upregulated SGK1 mRNA expression in a dose-dependent manner. This effect was paralleled by upregulation of the mRNA expression of MSX2 and CBFA1, osteogenic transcription factors, and of tissue-nonspecific alkaline phosphatase (ALPL), an osteogenic enzyme, as markers of increased osteo-/chondrogenic transdifferentiation. Phosphate treatment increased SGK1 and osteogenic markers mRNA expression as well as ALPL activity and induced calcification of HAoSMCs, all effects significantly augmented by additional treatment with IL-18. Conversely, silencing of SGK1 or cotreatment with the SGK1 inhibitor EMD638683 blunted the effects of IL-18 on osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. The procalcific effects of IL-18 were similarly suppressed in the presence of PI3K or PDK1 inhibitors. In conclusion, SGK1 expression is upregulated by IL-18 in VSMCs and SGK1 participates in the intracellular signaling of IL-18-induced osteo-/chondrogenic transdifferentiation of VSMCs. Thus, SGK1 may serve as therapeutic target to limit the progression of medial vascular calcification during vascular inflammation.
Collapse
|
23
|
Jiménez Villodres M, García Gutiérrez G, García Frías P, Rioja Villodres J, Martín Velázquez M, Sánchez Chaparro MÁ, Pérez López C, Valdivielso P. Fractional excretion of phosphorus and vascular calcification in stage 3 chronic kidney disease. J Investig Med 2018; 67:674-680. [DOI: 10.1136/jim-2018-000852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2018] [Indexed: 12/16/2022]
Abstract
The role of renal excretion of Pi in relation to vascular calcification (VC) in patients in the early stages of chronic kidney disease (CKD) is controversial. Thus, we determine the relation between fractional excretion of phosphorus (FEP) and VC, measured using two methods in a cross-sectional study of patients with stage 3 CKD. We recorded demographic data, anthropometry, comorbidities and active treatment. We measured 24-hour urine FEP and, in serum, measured fibroblast growth factor 23 (FGF23), α-Klotho, intact parathyroid hormone (iPTH), calcium and phosphorus. VC was measured by lateral abdominal radiography (Kauppila index (KI)) and CT of the abdominal aorta (measured in Agatston units). In 57% of subjects, abnormal VC was present when measured using CT, and in only 17% using lateral abdominal radiography. Factors associated with VC using CT were age, cardiovascular risk factors, vascular comorbidity, microalbuminuria and levels of FGF23, phosphorus and calcium x phosphorus product (CaxP); although only age (OR 1.25, 95% CI 1.11 to 1.41), smoking (OR 21.2, CI 4.4 to 100) and CaxP (OR 1.21, CI 1.06 to 1.37) maintained the association in a multivariate analysis. By contrast, only age (OR 1.35, 95% CI 1.07 to 1.74), CaxP (OR 1.14, CI 1.13 to 1.92) and FEP (OR 1.07,95% CI 1004 to 1.14) were associated with abnormal VC in the lateral abdominal radiography. In conclusion, in patients with stage 3 CKD, the detection of VC by abdominal CT is more sensitive than conventional X-rays. Moreover, CaxP is associated with cardiovascular risk factors and vascular comorbidity; quantification of FEPi in these patients provides additional clinical information in advanced VC detected by KI.
Collapse
|
24
|
Tuffaha R, Voelkl J, Pieske B, Lang F, Alesutan I. Role of PKB/SGK-dependent phosphorylation of GSK-3α/β in vascular calcification during cholecalciferol overload in mice. Biochem Biophys Res Commun 2018; 503:2068-2074. [PMID: 30119888 DOI: 10.1016/j.bbrc.2018.07.161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
Medial vascular calcification is a highly regulated process involving osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells. Both, protein kinase B (PKB) and serum- and glucocorticoid-inducible kinase 1 (SGK1) are involved in the intracellular signaling of vascular calcification and both phosphorylate and inactivate glycogen synthase kinase 3 (GSK-3). The present study explored whether PKB/SGK-dependent phosphorylation of GSK-3α/β is involved in vascular calcification. Experiments were performed in Gsk-3α/β double knockin mice lacking functional PKB/SGK phosphorylation sites (gsk-3KI) and corresponding wild-type mice (gsk-3WT) following high-dosed cholecalciferol treatment as well as ex vivo in aortic ring explants from gsk-3KI and gsk-3WT mice treated without and with phosphate. In gsk-3WT mice, high-dosed cholecalciferol induced vascular calcification and aortic osteo-/chondrogenic signaling, shown by increased expression of osteogenic markers Msx2, Cbfa1 and tissue-nonspecific alkaline phosphatase (Alpl). All these effects were suppressed in aortic tissue from gsk-3KI mice. Cholecalciferol decreased aortic Gsk-3α/β phosphorylation (Ser21/9) in gsk-3WT mice, while no phosphorylation was observed in gsk-3KI mice. Moreover, the mRNA expression of type III sodium-dependent phosphate transporter (Pit1) and plasminogen activator inhibitor 1 (Pai1) was increased following cholecalciferol treatment in aortic tissue of gsk-3WT mice, effects again blunted in gsk-3KI mice. In addition, phosphate treatment induced mineral deposition and osteogenic markers expression in aortic ring explants from gsk-3WT mice, effects reduced in aortic ring explants from gsk-3KI mice. In conclusion, vascular PKB/SGK-dependent phosphorylation of GSK-3α/β contributes to the osteoinductive signaling leading to vascular calcification.
Collapse
Affiliation(s)
- Rashad Tuffaha
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076 Tübingen, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, 10115 Berlin, Germany.
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178 Berlin, Germany; Department of Internal Medicine and Cardiology, German Heart Center Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076 Tübingen, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178 Berlin, Germany
| |
Collapse
|