1
|
You D, Tong K, Li Y, Zhang T, Wu Y, Wang L, Chen G, Zhang X. PinX1 plays multifaceted roles in human cancers: a review and perspectives. Mol Biol Rep 2024; 51:1163. [PMID: 39550726 PMCID: PMC11570563 DOI: 10.1007/s11033-024-10082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Pin2/TRF1 interacting protein X1 (PinX1), a telomerase inhibitor, is located at human chromosome 8p23. This region is important for telomere length maintenance and chromosome stability, both of which are essential for regulating human ageing and associated diseases. METHODS AND RESULTS We investigated the research progress of PinX1 in human cancers. In cancers, the expression levels of PinX1 mRNA and protein vary according to cancer cell types, and PinX1 plays a critical role in the regulation of cancer development and progression. Additionally, a review of the literature indicates that PinX1 is involved in mitosis and affects the sensitivity of cancer cells to radiation-induced DNA damage. Therefore, PinX1 has therapeutic potential for cancer, and understanding the function of PinX1 in the regulation of cancers is crucial for improving treatment. In this review, we discuss the expression level of PinX1 in a variety of cancers and how it affects the implicated pathways. Additionally, we outline the function of PinX1 in cancer cells and provide a theoretical basis for PinX1-related cancer therapy. CONCLUSIONS PinX1 has promising prospects in future cancer therapeutics. This review may provide theoretical support for researchers in this field.
Collapse
Affiliation(s)
- Dian You
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Kaiwen Tong
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Yuan Li
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Ting Zhang
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | | | - Ling Wang
- Botuvac Biotechnology Co., Ltd, Beijing, China
| | - Guangming Chen
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China
| | - Xiaoying Zhang
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, 759 East 2nd Rd., Huzhou, 313000, China.
| |
Collapse
|
2
|
Sekizaki T, Kameda H, Nakamura A, Kuwabara S, Nomoto H, Cho KY, Ishi Y, Motegi H, Miyoshi H, Atsumi T. Neuromedin B receptor as a potential therapeutic target for corticotroph adenomas. Pituitary 2023; 26:597-610. [PMID: 37642928 DOI: 10.1007/s11102-023-01350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Cushing's disease (CD) results from autonomous adrenocorticotropic hormone (ACTH) secretion by corticotroph adenomas, leading to excessive cortisol production, ultimately affecting morbidity and mortality. Pasireotide is the only FDA approved tumor directed treatment for CD, but it is effective in only about 25% of patients, and is associated with a high rate of hyperglycemia. Neuromedin B (NMB), a member of the bombesin-like peptide family, regulates endocrine secretion and cell proliferation. Here, we assessed NMB and NMB receptor (NMBR) expression in human corticotroph adenomas and the effects of NMBR antagonist PD168368 on murine and human corticotroph tumors. METHODS To investigate NMB and NMBR expression, real-time qPCR and immunostaining on human pathological specimens of corticotroph, non-functional and somatotroph adenomas were performed. The effects of PD168368 on hormone secretion and cell proliferation were studied in vitro, in vivo and in seven patient-derived corticotroph adenoma cells. NMB and NMBR were expressed in higher extent in human corticotroph adenomas compared with non-functional or somatotroph adenomas. RESULTS In murine AtT-20 cells, PD168368 reduced proopiomelanocortin (Pomc) mRNA/protein expression and ACTH secretion as well as cell proliferation. In mice with tumor xenografts, tumor growth, ACTH and corticosterone were downregulated by PD168368. In patient-derived adenoma cells, PD168368 reduced POMC mRNA expression in four out of seven cases and ACTH secretion in two out of five cases. A PD168368-mediated cyclin E suppression was also identified in AtT-20 and patient-derived cells. CONCLUSION NMBR antagonist represents a potential treatment for CD and its effect may be mediated by cyclin E suppression.
Collapse
Affiliation(s)
- Tomonori Sekizaki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiraku Kameda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Saki Kuwabara
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroshi Nomoto
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kyu Yong Cho
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yukitomo Ishi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Motegi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideaki Miyoshi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
3
|
Zheng AC, Wang EJ, Aghi MK. Recent advancements in the molecular biology of pituitary adenomas. Expert Rev Endocrinol Metab 2022; 17:293-304. [PMID: 35702013 DOI: 10.1080/17446651.2022.2082942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pituitary adenomas are a common and diverse group of intracranial tumors arising from the anterior pituitary that are usually slow-growing and benign, but still pose a significant healthcare burden to patients. Additionally, they are increasing in both incidence and prevalence, leading to a need for better understanding of molecular changes in the development of these tumors. AREAS COVERED A PubMed literature search was conducted using the terms 'pituitary adenoma' in combination with keywords related to secretory subtype: lactotroph, somatotroph, corticotroph, gonadotroph and null cell, in addition to their transcription factor expression: PIT1, TPIT, and SF-1. Articles resulting from this search were analyzed, as well as relevant articles cited as their references. In this review, we highlight recent advances in the genetic and epigenetic characterization of individual pituitary adenoma subtypes and the effect it may have on guiding future clinical treatment of these tumors. EXPERT OPINION Understanding the molecular biology of pituitary adenomas is a fundamental step toward advancing the treatment of these tumors. Yet crucial knowledge gaps exist in our understanding of the underlying molecular biology of pituitary adenomas which can potentially be addressed by turning to differentially activated molecular pathways in tumor relative to normal gland.
Collapse
Affiliation(s)
- Allison C Zheng
- Department of Neurosurgery; University of California at San Francisco (UCSF) San Francisco, CA, USA
| | - Elaina J Wang
- Department of Neurosurgery; Warren Alpert Medical School of Brown University Providence, RI, USA
| | - Manish K Aghi
- Department of Neurosurgery; University of California at San Francisco (UCSF) San Francisco, CA, USA
| |
Collapse
|
4
|
Taniguchi-Ponciano K, Portocarrero-Ortiz LA, Guinto G, Moreno-Jimenez S, Gomez-Apo E, Chavez-Macias L, Peña-Martínez E, Silva-Román G, Vela-Patiño S, Ordoñez-García J, Andonegui-Elguera S, Ferreira-Hermosillo A, Ramirez-Renteria C, Espinosa-Cardenas E, Sosa E, Espinosa-de-Los-Monteros AL, Salame-Khouri L, Perez C, Lopez-Felix B, Vargas-Ortega G, Gonzalez-Virla B, Lisbona-Buzali M, Marrero-Rodríguez D, Mercado M. The kinome, cyclins and cyclin-dependent kinases of pituitary adenomas, a look into the gene expression profile among tumors from different lineages. BMC Med Genomics 2022; 15:52. [PMID: 35260162 PMCID: PMC8905767 DOI: 10.1186/s12920-022-01206-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Background Pituitary adenomas (PA) are the second most common intracranial tumors and are classified according to hormone they produce, and the transcription factors they express. The majority of PA occur sporadically, and their molecular pathogenesis is incompletely understood. Methods Here we performed transcriptome and proteome analysis of tumors derived from POU1F1 (GH-, TSH-, and PRL-tumors, N = 16), NR5A1 (gonadotropes and null cells adenomas, n = 17) and TBX19 (ACTH-tumors, n = 6) lineages as well as from silent ACTH-tumors (n = 3) to determine expression of kinases, cyclins, CDKs and CDK inhibitors. Results The expression profiles of genes encoding kinases were distinctive for each of the three PA lineage: NR5A1-derived tumors showed upregulation of ETNK2 and PIK3C2G and alterations in MAPK, ErbB and RAS signaling, POU1F1-derived adenomas showed upregulation of PIP5K1B and NEK10 and alterations in phosphatidylinositol, insulin and phospholipase D signaling pathways and TBX19-derived adenomas showed upregulation of MERTK and STK17B and alterations in VEGFA-VEGFR, EGF-EGFR and Insulin signaling pathways. In contrast, the expression of the different genes encoding cyclins, CDK and CDK inhibitors among NR5A1-, POU1F1- and TBX19-adenomas showed only subtle differences. CDK9 and CDK18 were upregulated in NR5A1-adenomas, whereas CDK4 and CDK7 were upregulated in POUF1-adenomas. Conclusions The kinome of PA clusters these lesions into three distinct groups according to the transcription factor that drives their terminal differentiation. And these complexes could be harnessed as molecular therapy targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01206-y.
Collapse
Affiliation(s)
- Keiko Taniguchi-Ponciano
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico
| | | | | | - Sergio Moreno-Jimenez
- Instituto Nacional de Neurología Y Neurocirugía "Manuel Velasco Suarez", Mexico, Mexico.,Centro Neurológico, Centro Medico ABC, Mexico, Mexico
| | - Erick Gomez-Apo
- Área de Neuropatología, Servicio de Anatomía Patológica, Hospital General de México Dr. Eduardo Liceaga, Mexico, Mexico
| | - Laura Chavez-Macias
- Área de Neuropatología, Servicio de Anatomía Patológica, Hospital General de México Dr. Eduardo Liceaga, Mexico, Mexico.,Facultad de Medicina, Universidad Nacional Autonoma de México, Mexico, Mexico
| | - Eduardo Peña-Martínez
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico
| | - Gloria Silva-Román
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico
| | - Sandra Vela-Patiño
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico
| | - Jesús Ordoñez-García
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico
| | - Sergio Andonegui-Elguera
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico
| | - Aldo Ferreira-Hermosillo
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico.,Servicio de Endocrinologia, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Claudia Ramirez-Renteria
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico.,Servicio de Endocrinologia, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Etual Espinosa-Cardenas
- Servicio de Endocrinologia, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Ernesto Sosa
- Servicio de Endocrinologia, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Ana Laura Espinosa-de-Los-Monteros
- Servicio de Endocrinologia, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Latife Salame-Khouri
- Servicio de Endocrinologia, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Carolina Perez
- Servicio de Endocrinologia, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Blas Lopez-Felix
- Servicio de Neurocirugia, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Guadalupe Vargas-Ortega
- Servicio de Endocrinologia, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Baldomero Gonzalez-Virla
- Servicio de Endocrinologia, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Marcos Lisbona-Buzali
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico
| | - Daniel Marrero-Rodríguez
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico.
| | - Moisés Mercado
- CONACyT-Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, D.F. 06720, Mexico, Mexico.
| |
Collapse
|
5
|
Hinojosa-Amaya JM, Lam-Chung CE, Cuevas-Ramos D. Recent Understanding and Future Directions of Recurrent Corticotroph Tumors. Front Endocrinol (Lausanne) 2021; 12:657382. [PMID: 33986726 PMCID: PMC8111286 DOI: 10.3389/fendo.2021.657382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Corticotroph tumors (CTs) are pituitary neoplasms arising from the Tpit lineage, which may or not express adrenocorticotrophic hormone (ACTH). Functioning CTs cause Cushing's disease (CD), which has high morbidity and mortality due to hypercortisolemia. "Non-functioning" or silent CTs (SCT) and the Crooke's cell subtypes do not cause CD and may be asymptomatic until manifested by compressive symptoms and are more frequently found as macroadenoma. Both tend toward more aggressive behavior, recurrence, and a higher rate of malignant transformation to pituitary carcinoma. Tumorigenesis involves genetic, epigenetic, and post-transcriptional disruption of cell-cycle regulators, which increase cell proliferation, POMC overexpression, ACTH transcription, and/or hypersecretion. Furthermore, functioning CTs develop resistance to glucocorticoid-mediated negative feedback on ACTH secretion, through increased expression of testicular orphan nuclear receptor 4 (TR4), heat-shock protein 90 (HSP90), and loss-of-function mutation of CDK5 and ABL enzyme substrate 1 (CABLES1) gene. Overt autonomous hypercortisolemia is difficult to control, and multiple diagnostic studies and therapeutic modalities are commonly required. Cell-cycle regulation depends mainly on p27, cyclin E, cyclin-dependent kinases (CDKs), and the retinoblastoma protein (Rb)/E2F1 transcription factor complex. Gain-of-function mutations of ubiquitin-specific protease (USP) 8, USP48, and BRAF genes may subsequently cause overexpression of epithelial growth factor receptor (EGFR), and enhance POMC transcription, cell proliferation, and tumor growth. Epigenetic changes through micro RNAs and decreased DNA deacetylation by histone deacetylase type 2 (HDAC2), may also affect tumor growth. All the former mechanisms may become interesting therapeutic targets for CTs, aside from temozolomide, currently used for aggressive tumors. Potential therapeutic agents are EGFR inhibitors such as gefitinib and lapatinib, the purine analog R-roscovitine by dissociation of CDK2/Cyclin E complex, the HSP90 inhibitor silibinin (novobiocin), to reduce resistance to glucocorticoid-mediated negative feedback, and BRAF inhibitors vemurafenib and dabrafenib in BRAF V600E positive tumors. This review summarizes the molecular mechanisms related to CTs tumorigenesis, their diagnostic approach, and provides an update of the potential novel therapies, from the lab bench to the clinical translation.
Collapse
Affiliation(s)
- José Miguel Hinojosa-Amaya
- Pituitary Clinic, Endocrinology Division, Department of Medicine, Hospital Universitario “Dr. José E. González” UANL, Monterrey, Mexico
| | - César Ernesto Lam-Chung
- Neuroendocrinology Clinic, Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Daniel Cuevas-Ramos
- Neuroendocrinology Clinic, Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- *Correspondence: Daniel Cuevas-Ramos,
| |
Collapse
|
6
|
Nishioka H, Yamada S. Cushing's Disease. J Clin Med 2019; 8:jcm8111951. [PMID: 31726770 PMCID: PMC6912360 DOI: 10.3390/jcm8111951] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
In patients with Cushing's disease (CD), prompt diagnosis and treatment are essential for favorable long-term outcomes, although this remains a challenging task. The differential diagnosis of CD is still difficult in some patients, even with an organized stepwise diagnostic approach. Moreover, despite the use of high-resolution magnetic resonance imaging (MRI) combined with advanced fine sequences, some tumors remain invisible. Surgery, using various surgical approaches for safe maximum tumor removal, still remains the first-line treatment for most patients with CD. Persistent or recurrent CD after unsuccessful surgery requires further treatment, including repeat surgery, medical therapy, radiotherapy, or sometimes, bilateral adrenalectomy. These treatments have their own advantages and disadvantages. However, the most important thing is that this complex disease should be managed by a multidisciplinary team with collaborating experts. In addition, a personalized and individual-based approach is paramount to achieve high success rates while minimizing the occurrence of adverse events and improving the patients' quality of life. Finally, the recent new insights into the pathophysiology of CD at the molecular level are highly anticipated to lead to the introduction of more accurate diagnostic tests and efficacious therapies for this devastating disease in the near future.
Collapse
Affiliation(s)
- Hiroshi Nishioka
- Department of Hypothalamic and Pituitary surgery, Toranomon Hospital, Tokyo 1058470, Japan;
- Okinaka Memorial Institute for Medical Research, Tokyo 1058470, Japan
| | - Shozo Yamada
- Hypothalamic and Pituitary Center, Moriyama Neurological Center Hospital, Tokyo 1340081, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo 1058470, Japan
- Correspondence: ; Tel.: +81-336-751-211
| |
Collapse
|