1
|
Lin H, Xu Y, Xiong H, Wang L, Shi Y, Wang D, Wang Z, Ren J, Wang S. Mechanism of action of Panax ginseng alcohol extract based on orexin-mediated autophagy in the treatment of sleep and cognition in aged sleep-deprived rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118907. [PMID: 39389397 DOI: 10.1016/j.jep.2024.118907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (P. ginseng) C. A. Meyer. has been used extensively globally as a medicine. It has a therapeutic effect on sleep and is an attractive alternative for patients with insomnia. The United States Patent of Invention has approved the use of P. ginseng alcohol extract (GAE) in nutraceuticals or food to improve sleep. It has shown promise as an effective therapeutic agent for improving sleep and cognition. However, its mechanism of action is not yet fully understood. AIM OF THE STUDY To investigate the therapeutic benefits of GAE on sleep and cognition and its underlying mechanism in aged sleep-deprived rats, with a focus on orexin-mediated autophagy function. MATERIALS AND METHODS We conducted in vivo tests in an aged sleep-deprivation rat model produced using p-chlorophenylalanine (PCPA) coupled with modified multi-platform method to examine the therapeutic effects and mechanisms of GAE. A pentobarbital sodium-induced sleep test and water maze were used to assess sleep and cognitive performance, respectively. An enzyme-linked immunosorbent assay was used to determine orexin levels and aging and sleep markers in serum and hypothalamic tissues. Hematoxylin-eosin staining and Nissl staining were used to assess histopathological changes, and autophagy levels were assessed using transmission electron microscopy, immunofluorescence. Western blot and immunohistochemical staining were performed to detect the levels of orexin, orexin-receptor proteins, and autophagy-associated proteins to study the effects of GAE on hippocampal neurons, and the underlying mechanisms. RESULTS In aged sleep-deprived rats, GAE treatment prolonged sleep duration, improved cognitive function, prevented hippocampal neuronal damage, increased the number of Nissl bodies, improved aging and sleep markers, and enhanced the LC3A/B expression in autophagosomes and neurons. The amount of orexin in serum and hypothalamic tissue and OX1R, OX2R, and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) proteins also reduced, which resulted in the inhibition of the PI3K/Akt/mTOR pathway and activation of the autophagy process. CONCLUSIONS GAE may reduce hypothalamic orexin secretion and interact with orexin receptors to inhibit the PI3K/Akt/mTOR signalling network and activate autophagy. This may be a potential mechanism of action of GAE in regulating sleep-related cognitive function.
Collapse
Affiliation(s)
- Haining Lin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunlong Xu
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Huazhong Xiong
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lichao Wang
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yuqing Shi
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongyi Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zixu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jixiang Ren
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Siming Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Ma L, Cai L, Pan J, Cheng Z, Lv Y, Zheng J, Xu P, Zhang H, Chen X, Huang Y, Luo X, Zhao J, Xu L. The immunopathology of coronary microembolization and the underlying inflammopathophysiological mechanisms. Allergol Immunopathol (Madr) 2024; 52:137-146. [PMID: 39515808 DOI: 10.15586/aei.v52i6.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
In coronary microembolization, inflammatory cell infiltration, patchy necrosis, and extensive intra-myocardial hemorrhage are dominant, which induce myocardial dysfunction with clinical symptoms of chronic ischemic cardiomyopathy. Microembolization can lead to obstruction of the coronary microvessels and result in the micro-infarction of the heart. The inflammation and elevated expression of the tumor necrosis factor in cardiomyocytes and the activation of extracellular ERK are involved in initiating the inflammatory response mechanism. The PI3K/Akt signaling pathway is the enriched pathway, and for controlling, inhibition of PI3K/Akt is necessary. Furthermore, the release of cytokines and the activation of inflammasomes contribute to the enhancement of vascular permeability, which results in edema within the myocardium. The immune response and inflammation represent the primary triggers in this process. The ability to control immune response and inflammation reactions may lead to the development of new therapies for microembolization.
Collapse
Affiliation(s)
- Li Ma
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Liping Cai
- Health Management Center, Wuhan Third Hospital, Wuhan, China
| | - Jiayue Pan
- Xiangtao College of Medicine, Xiangtao College Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zimin Cheng
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yuanyuan Lv
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Peicheng Xu
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xinyu Chen
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yimeng Huang
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaolei Luo
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jinhe Zhao
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China;
| | - Liang Xu
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China;
| |
Collapse
|
3
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
4
|
Cavalu S, Saber S, Hamad RS, Abdel-Reheim MA, Elmorsy EA, Youssef ME. Orexins in apoptosis: a dual regulatory role. Front Cell Neurosci 2024; 18:1336145. [PMID: 38699177 PMCID: PMC11064656 DOI: 10.3389/fncel.2024.1336145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
The orexins, also referred to as hypocretins, are neuropeptides that originate from the lateral hypothalamus (LH) region of the brain. They are composed of two small peptides, orexin-A, and orexin-B, which are broadly distributed throughout the central and peripheral nervous systems. Orexins are recognized to regulate diverse functions, involving energy homeostasis, the sleep-wake cycle, stress responses, and reward-seeking behaviors. Additionally, it is suggested that orexin-A deficiency is linked to sleepiness and narcolepsy. The orexins bind to their respective receptors, the orexin receptor type 1 (OX1R) and type 2 (OX2R), and activate different signaling pathways, which results in the mediation of various physiological functions. Orexin receptors are widely expressed in different parts of the body, including the skin, muscles, lungs, and bone marrow. The expression levels of orexins and their receptors play a crucial role in apoptosis, which makes them a potential target for clinical treatment of various disorders. This article delves into the significance of orexins and orexin receptors in the process of apoptosis, highlighting their expression levels and their potential contributions to different diseases. The article offers an overview of the existing understanding of the orexin/receptor system and how it influences the regulation of apoptosis.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
5
|
Ding Y, Xiang Q, Zhu P, Fan M, Tong H, Wang M, Cheng S, Yu P, Shi H, Zhang H, Chen X. Qihuang Zhuyu formula alleviates coronary microthrombosis by inhibiting PI3K/Akt/αIIbβ3-mediated platelet activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155276. [PMID: 38295661 DOI: 10.1016/j.phymed.2023.155276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Coronary microembolism (CME) is commonly seen in the peri-procedural period of Percutaneous Coronary Intervention (PCI), where local platelet activation and endothelial cell inflammation crosstalk may lead to micro thrombus erosion and rupture, with serious consequences. Qihuang Zhuyu Formula (QHZYF) is a Chinese herbal compound with high efficacy against coronary artery disease, but its antiplatelet mechanism is unclear. HYPOTHESIS/PURPOSE This study aimed to elucidate the effects and mechanisms of QHZYF on sodium laurate-induced CME using network pharmacology and in vitro and in vivo experiments. METHODS We employed high-performance liquid chromatography mass spectrometry to identify the main components of QHZYF. Network pharmacology analysis, molecular docking and surface plasmon resonance (SPR) were utilized to predict the primary active components, potential therapeutic targets, and intervention pathways mediating the effects of QHZYF on platelet activation. Next, we pretreated a sodium laurate-induced minimally invasive CME rat model with QHZYF. In vivo experiments were performed to examine cardiac function in rats, to locate coronary arteries on heart sections to observe internal microthrombi, to extract rat Platelet-rich plasma (PRP) for adhesion assays and CD62p and PAC-1 (ITGB3/ITGA2B) flow assays, and to measure platelet-associated protein expression in PRP. In vitro clot retraction and Co-culture of HUVECs with PRP were performed and the gene pathway was validated through flow cytometry and immunofluorescence. RESULTS Combining UPLC-Q-TOF/MS technology and database mining, 78 compounds were finally screened as the putative and representative compounds of QHZYF, with 75 crossover genes associated with CME. QHZYF prevents CME mainly by regulating key pathways of the inflammation and platelets, including Lipid and atherosclerosis, Fluid shear stress, platelet activation, and PI3K-Akt signaling pathways. Five molecules including Calyson, Oroxin A, Protosappanin A,Kaempferol and Geniposide were screened and subjected to molecular docking and SPR validation in combination with Lipinski rules (Rule of 5, Ro5). In vivo experiments showed that QHZYF not only improved myocardial injury but also inhibited formation of coronary microthrombi. QHZYF inhibited platelet activation by downregulating expression of CD62p receptor and platelet membrane protein αIIbβ3 and reduced the release of von Willebrand Factor (vWF), Ca2+ particles and inflammatory factor IL-6. Further analysis revealed that QHZYF inhibited the activation of integrin αIIbβ3, via modulating the PI3K/Akt pathways. In in vitro experiments, QHZYF independently inhibited platelet clot retraction. Upon LPS induction, the activation of platelet membrane protein ITGB3 was inhibited via the PI3K/Akt pathway, revealing an important mechanism for attenuating coronary microthrombosis. We performed mechanistic validation using PI3K inhibitor LY294002 and Akt inhibitor MK-2206 to show that QHZYF inhibited platelet membrane protein activation and inflammation to improved coronary microvessel embolism by regulating PI3K/Akt/αIIbβ3 pathways, mainly by inhibiting PI3K and Akt phosphorylation. CONCLUSION QHZYF interferes with coronary microthrombosis through inhibition of platelet adhesion, activation and inflammatory crosstalk, thus has potential in clinical anti-platelet applications. Calyson, Oroxin A, Protosappanin A, Kaempferol and Geniposide may be the major active ingredient groups of QHZYF that alleviate coronary microthrombosis.
Collapse
Affiliation(s)
- Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Peiyuan Zhu
- Department of Transfusion Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, PR China
| | - Manlu Fan
- Department of TCM, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong 250013, China
| | - Huaqin Tong
- Department of Cardiology, Yangzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou 225127, China
| | - Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Songyi Cheng
- Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China
| | - Haibo Shi
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China
| | - Haowen Zhang
- College of Health Preservation and Rehabilitation, Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
6
|
Guo X, Wen J, Gao Q, Zhao Y, Zhao Y, Wang C, Xu N, Shao Y, Chang X. Orexin-A/OX1R is involved in regulation of autophagy to promote cortisol secretion in adrenocortical cell. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166844. [PMID: 37572990 DOI: 10.1016/j.bbadis.2023.166844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Hypercortisolism has emerged as a prominent clinical condition worldwide caused by biochemical cortisol excess in patients, and optimization treatment is needed urgently in the clinic. Previously, we observed that orexin-A/orexin type 1 receptor (OX1R) promoted cell proliferation, inhibited apoptosis, and increased cortisol release in adrenocortical cells. However, the functions of orexin-A/OX1R on autophagy and its molecular mechanism are not known. METHODS Transmission electron microscopy and confocal microscope were performed to detect autophagosomes. Western blot were performed to detect autophagy proteins. The cortisol concentration was assessed with an ELISA. FINDINGS Our data demonstrated that orexin-A/OX1R activated the mammalian target of rapamycin/p70 ribosomal protein S6 kinase-1 pathway, thereby inhibiting autophagy in H295R cells and Y-1 cells. Furthermore, the orexin-A/OX1R-mediated suppression of autophagy played a crucial role in cortisol secretion. Mechanistically, the expression of 3β-hydroxysteroid dehydrogenase/isomerase, the rate-limiting enzyme in cortisol synthesis, was increased with autophagy inhibition mediated by orexin-A/OX1R. INTERPRETATION This study provided the evidence that orexin-A/OX1R participated in modulating mTOR/p70S6K1/autophagy signaling pathway to promote cortisol secretion in adrenocortical cell. The findings suggest the mechanistic basis for disorders of cortisol secretion, providing the potential therapeutic targets for hypercortisolism treatment. FUND: This work was supported by National Natural Science Foundation of China (32170603, 31871286), the Doctoral Start-up Foundation of Liaoning Province (20180540008, 2019-BS-298), the Natural Science Foundation of Liaoning Province (2019-ZD-0779), and Shenyang Science and Technology Plan Fund Projects (21-173-9-28).
Collapse
Affiliation(s)
- Xin Guo
- Department of Pediatrics, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, PR China
| | - Jing Wen
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, PR China
| | - Qianqian Gao
- Department of the First Obstetric Ward, Wei Fang People's Hospital, Weifang, Shandong 261041, PR China
| | - Yuyan Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, PR China
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Na Xu
- Natural Sciences Department, LaGuardia Community College (City University of New York), 31-10 Thomson Ave, Long Island City, NY 11101, USA
| | - Yaozhong Shao
- The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Xiaocen Chang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
7
|
Song Y, Wang B, Wang W, Shi Q. Regulatory effect of orexin system on various diseases through mTOR signaling pathway. Trends Endocrinol Metab 2023; 34:292-302. [PMID: 36934048 DOI: 10.1016/j.tem.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Orexin (OX)A and OXB are a pair of neuropeptides secreted by orexin-producing neurons in the lateral hypothalamus. The orexin system can regulate many physiological processes through these two receptor pathways, such as feeding behavior, sleep/wake state, energy homeostasis, reward, and the coordination of emotion. Mammalian target of rapamycin (mTOR) can coordinate upstream signals with downstream effectors, thereby regulating fundamental cellular processes and also plays an essential role in the signaling network downstream of the orexin system. In turn, the orexin system can activate mTOR. Here, we review the association of the orexin system with the mTOR signaling pathway mainly by discussing that drugs in various diseases exert their effects on the orexin system, indirectly affecting the mTOR signaling pathway.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| | - Beibei Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenjun Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiwen Shi
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Hypocretin-1 suppresses malignant progression of glioblastoma cells through Notch1 signaling pathway. Brain Res Bull 2023; 196:46-58. [PMID: 36925051 DOI: 10.1016/j.brainresbull.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Hypocretin-1 is a multifunctional neuropeptide that has been identified as a potential antitumor agent for its role in inhibiting tumor growth, including in colon cancer, neuroendocrine tumor, and prostate cancer. However, the role and mechanism of hypocretin-1 in the occurrence and development of malignant glioma have not been well studied. Therefore, we investigated the effect of hypocretin-1 on glioblastoma proliferation, apoptosis, migration and invasion and its mechanism. We found that the hypocretin-1 receptor was expressed in both glioma cell lines and glioma tissues. Hypocretin-1 treatment can inhibit glioblastoma cell proliferation, migration and invasion, and induce cell apoptosis. Meanwhile, hypocretin-1 treatment significantly reduces tumor growth rate and tumor weight. In addition, mechanistic studies have found that hypocretin-1 exerts antitumor effects by inhibiting NOTCH signaling pathway. Overexpression of NICD significantly reversed the antitumor effect of hypocretin on glioblastoma. Taken together, these findings suggest that hypocretin-1 inhibits glioblastoma proliferation, migration and invasion and induces apoptosis in vitro and in vivo through NOTCH signaling pathway.
Collapse
|
9
|
Chavda V, Chaurasia B, Umana GE, Tomasi SO, Lu B, Montemurro N. Narcolepsy-A Neuropathological Obscure Sleep Disorder: A Narrative Review of Current Literature. Brain Sci 2022; 12:1473. [PMID: 36358399 PMCID: PMC9688775 DOI: 10.3390/brainsci12111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 08/29/2023] Open
Abstract
Narcolepsy is a chronic, long-term neurological disorder characterized by a decreased ability to regulate sleep-wake cycles. Some clinical symptoms enter into differential diagnosis with other neurological diseases. Excessive daytime sleepiness and brief involuntary sleep episodes are the main clinical symptoms. The majority of people with narcolepsy experience cataplexy, which is a loss of muscle tone. Many people experience neurological complications such as sleep cycle disruption, hallucinations or sleep paralysis. Because of the associated neurological conditions, the exact pathophysiology of narcolepsy is unknown. The differential diagnosis is essential because relatively clinical symptoms of narcolepsy are easy to diagnose when all symptoms are present, but it becomes much more complicated when sleep attacks are isolated and cataplexy is episodic or absent. Treatment is tailored to the patient's symptoms and clinical diagnosis. To facilitate the diagnosis and treatment of sleep disorders and to better understand the neuropathological mechanisms of this sleep disorder, this review summarizes current knowledge on narcolepsy, in particular, genetic and non-genetic associations of narcolepsy, the pathophysiology up to the inflammatory response, the neuromorphological hallmarks of narcolepsy, and possible links with other diseases, such as diabetes, ischemic stroke and Alzheimer's disease. This review also reports all of the most recent updated research and therapeutic advances in narcolepsy. There have been significant advances in highlighting the pathogenesis of narcolepsy, with substantial evidence for an autoimmune response against hypocretin neurons; however, there are some gaps that need to be filled. To treat narcolepsy, more research should be focused on identifying molecular targets and novel autoantigens. In addition to therapeutic advances, standardized criteria for narcolepsy and diagnostic measures are widely accepted, but they may be reviewed and updated in the future with comprehension. Tailored treatment to the patient's symptoms and clinical diagnosis and future treatment modalities with hypocretin agonists, GABA agonists, histamine receptor antagonists and immunomodulatory drugs should be aimed at addressing the underlying cause of narcolepsy.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal
| | - Giuseppe E. Umana
- Department of Neurosurgery, Associate Fellow of American College of Surgeons, Trauma and Gamma-Knife Centre, Cannizzaro Hospital Catania, 95100 Catania, Italy
| | | | - Bingwei Lu
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
10
|
Orexin A Suppresses the Expression of Exosomal PD-L1 in Colon Cancer and Promotes T Cell Activity by Inhibiting JAK2/STAT3 Signaling Pathway. Dig Dis Sci 2022; 67:2173-2181. [PMID: 34097168 DOI: 10.1007/s10620-021-07077-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Colon cancer, ranked third in cancer related mortality, is the most common malignant cancer of digestive tract. Though immune checkpoint inhibitors show promising efficacy in colon cancer, a rather high unresponsive rate and recurrence rate requires further elucidation of the underlying regulatory mechanism of cancer-related immunity. AIMS To study the regulatory function of Orexin A in the expression of exosomal PD-L1 and T cell activity. METHODS Orthotopic colon cancer transplantation mice model were established to study the cancer growth and immune infiltration between Orexin A treated group and untreated group. In vitro studies using mouse CT-26 and human HCT-116 colon cancer cell model studied the effect of Orexin A on cellular and exosomal PD-L1 expression. Co-culturing Jurkat cells with exosomes delivered by cancer cells treated with Orexin A, PD-L1 knockdown and PBS studied different effects on T cell. Comparing Orexin A with WP1066, a JAK2/STAT3 inhibitor verified the mechanism of these changes. RESULTS The growth rate of orthotopic transplanted colon cancer was slower in Orexin A treated group, with lower PD-L1 expression and higher immune infiltration. Orexin A could inhibit cellular and exosomal PD-L1 expression. The decreased expression of PD-L1 in exosomes could promote the activity of Jurkat cells secreting higher level of IFN-γ and IL-2. Orexin A showed a similar effect like WP1066 which proved JAK2/STAT3 signaling pathway was its downstream signaling pathway. CONCLUSIONS Orexin A could suppress the expression of exosomal PD-L1 in colon cancer cells and promote T cells activity by inhibiting JAK2/STAT3 signaling pathway.
Collapse
|
11
|
Boushra AF, Mahmoud RH, Ayoub SE, Mohammed RA, Shamardl HA, El Amin Ali AM. The Potential Therapeutic Effect of Orexin-Treated versus Orexin-Untreated Adipose Tissue-Derived Mesenchymal Stem Cell Therapy on Insulin Resistance in Type 2 Diabetic Rats. J Diabetes Res 2022; 2022:9832212. [PMID: 35083338 PMCID: PMC8786498 DOI: 10.1155/2022/9832212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by resistance to peripheral insulin actions. Mesenchymal stem cells have been studied for years in T2DM therapy, including adipose tissue-derived mesenchymal stem cells (AD-MSCs). Orexin neuropeptides (A and B) are well-known regulators of appetite and physical activity. The aim of this work was to elucidate the possible therapeutic effect of AD-MSC preconditioning with orexin A (OXA) on insulin resistance in rats. Twenty-eight adult male albino rats were divided into 4 equal groups: a normal control group and 3 diabetic groups (a control T2DM group, diabetic rats treated by an AD-MSCs group, and diabetic rats treated by AD-MSCs preconditioned with OXA). We noticed that the treated groups showed a significant alleviation of insulin resistance parameters as shown in lowering the serum levels of glucose, insulin, total cholesterol, inflammatory markers, and HOMA-IR as compared to the control diabetic group with more significant reduction observed in the OXA-pretreated AD-MSCs-administrated group. More improvement was also noted in the glucose uptake and GLUT-4 gene expression in the skeletal muscle and adipose tissue in the OXA-pretreated AD-MSCs-administrated group compared to the untreated diabetic group. Conclusion. Preconditioning of AD-MSCs with OXA can significantly increase their potential to reduce the insulin resistance in the rat model of T2DM.
Collapse
Affiliation(s)
- Amy F. Boushra
- Department of Medical Physiology, Faculty of Medicine, Fayoum University, Egypt
| | - Rania H. Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Egypt
| | - Shymaa E. Ayoub
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Egypt
| | - Rehab A. Mohammed
- Department of Medical Physiology, Faculty of Medicine, Fayoum University, Egypt
| | - Hanan A. Shamardl
- Department of Medical Pharmacology Faculty of Medicine, Fayoum University, Egypt
| | | |
Collapse
|
12
|
Orexin-A Regulates Follicular Growth, Proliferation, Cell Cycle and Apoptosis in Mouse Primary Granulosa Cells via the AKT/ERK Signaling Pathway. Molecules 2021; 26:molecules26185635. [PMID: 34577105 PMCID: PMC8467508 DOI: 10.3390/molecules26185635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
Granulosa cells (GCs) are essential for follicular growth, development, and atresia. The orexin-A (OXA) neuropeptide is widely involved in the regulation of various biological functions. OXA selectively binds to orexin receptor type 1 (OX1R) and mediates all its biological actions via OX1R. This study aimed to explore the expression of OXA and OX1R and their regulatory role in GCs proliferation, cell cycle progression, apoptosis, oocyte maturation, and underlying molecular mechanisms of these processes and elucidate its novel signaling pathway. Western blotting and RT-qPCR showed that OXA and OX1R were expressed during different developmental stages of GCs, and siRNA transfection successfully inhibited the expression of OX1R at the translational and transcriptional levels. Flow cytometry revealed that OX1R knockdown upregulated GCs apoptosis and triggered S-phase arrest in cell cycle progression. RT-qPCR and Western blotting showed significantly reduced expression of Bcl-2 and elevated expression of Bax, caspase-3, TNF-α, and P21 in OX1R-silenced GCs. Furthermore, the CCK-8 assay showed that knockdown of OX1R suppressed GCs proliferation by downregulating the expression of PCNA, a proliferation marker gene, at the translational and transcriptional levels. Western blotting revealed that knockdown of OX1R resulted in a considerable decrease of the phosphorylation level of the AKT and ERK1/2 proteins, indicating that the AKT/ERK1/2 pathway is involved in regulating GCs proliferation and apoptosis. In addition, OX1R silencing enhanced the mRNA expression of GDF9 and suppressed the mRNA expression of BMP15 in mouse GCs. Collectively, these results reveal a novel regulatory role of OXA in the development of GCs and folliculogenesis by regulating proliferation, apoptosis, and cell cycle progression. Therefore, OXA can be a promising therapeutic agent for female infertility.
Collapse
|
13
|
Focus on the Complex Interconnection between Cancer, Narcolepsy and Other Neurodegenerative Diseases: A Possible Case of Orexin-Dependent Inverse Comorbidity. Cancers (Basel) 2021; 13:cancers13112612. [PMID: 34073579 PMCID: PMC8198883 DOI: 10.3390/cancers13112612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This narrative review first describes from several points of view the complex interrelationship between cancer and neurodegeneration, with special attention to the mechanisms that might underlie an inverse relationship between them. In particular, the mechanisms that might induce an imbalance between cell apoptotic and proliferative stimuli are discussed. Second, the review summarizes findings on orexins and their involvement in narcolepsy, neurodegenerative diseases, and cancer, starting from epidemiological data then addressing laboratory findings, animal models, and human clinical observational and interventional investigations. Important research efforts are warranted on these topics, as they might lead to novel therapeutic approaches to both neurodegenerative diseases and cancer. Abstract Conditions such as Alzheimer’s (AD) and Parkinson’s diseases (PD) are less prevalent in cancer survivors and, overall, cancer is less prevalent in subjects with these neurodegenerative disorders. This seems to suggest that a propensity towards one type of disease may decrease the risk of the other. In addition to epidemiologic data, there is also evidence of a complex biological interconnection, with genes, proteins, and pathways often showing opposite dysregulation in cancer and neurodegenerative diseases. In this narrative review, we focus on the possible role played by orexin signaling, which is altered in patients with narcolepsy type 1 and in those with AD and PD, and which has been linked to β-amyloid brain levels and inflammation in mouse models and to cancer in cell lines. Taken together, these lines of evidence depict a possible case of inverse comorbidity between cancer and neurodegenerative disorders, with a role played by orexins. These considerations suggest a therapeutic potential of orexin modulation in diverse pathologies such as narcolepsy, neurodegenerative disorders, and cancer.
Collapse
|
14
|
Ye W, Yan Y, Tang Y, Dong X, Chen G, Kang J, Huang L, Xiong Q, Feng Z. Orexin-A Attenuates Inflammatory Responses in Lipopolysaccharide-Induced Neural Stem Cells by Regulating NF-KB and Phosphorylation of MAPK/P38/Erk Pathways. J Inflamm Res 2021; 14:2007-2017. [PMID: 34040413 PMCID: PMC8140926 DOI: 10.2147/jir.s308078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background Neuronal damage is the main cause of neurological diseases. Neural stem cells (NSCs) have the functions of cell repair and replacement of neurons, secretion of neurotrophic factors, and immune regulation of the neural microenvironment. Objective Previous study found that Orexin-A had a protective effect on neurons in the central nervous system, but it is lacking in making great efforts on the function of Orexin-A on NSCs. This study aimed to investigate the anti-inflammatory responses and signaling mechanisms of Orexin-A on lipopolysaccharide (LPS)-induced NSCs. Methods Quantitative real-time polymerase chain reaction was used to detect the mRNA level. Signaling pathway-related protein expression was detected by Western blot. The proliferation and migration of NSCs were investigated by Cell Counting Kit-8 (CCK-8) detection kit and transwell assay. Besides, the staining of hematoxylin and eosin (HE) was performed to study the morphology of cell. Results Orexin-A decreased the pro-inflammatory cytokines of IL-1β, TNF-α, and IL-6 induced by LPS by regulating nuclear factor-k-gene binding (NF-kB) and phosphorylation of P38/Erk-mitogen-activated protein kinases (MAPKs) pathways, but not p-JNK signaling. Conclusion Our findings indicate that Orexin-A can alleviate the inflammatory response of NSC. It can provide beneficial help in neural stem cell therapy applications.
Collapse
Affiliation(s)
- Wen Ye
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yan Yan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yunliang Tang
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Xiaoyang Dong
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Gengfa Chen
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Junwei Kang
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Lianghua Huang
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Qi Xiong
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Zhen Feng
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| |
Collapse
|
15
|
Shin N, Lee HJ, Sim DY, Im E, Park JE, Park WY, Cho AR, Shim BS, Kim SH. Apoptotic effect of compound K in hepatocellular carcinoma cells via inhibition of glycolysis and Akt/mTOR/c-Myc signaling. Phytother Res 2021; 35:3812-3820. [PMID: 33856720 DOI: 10.1002/ptr.7087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023]
Abstract
Since the AKT/mammalian target of rapamycin (mTOR)/c-Myc signaling plays a pivotal role in the modulation of aerobic glycolysis and tumor growth, in the present study, the role of AKT/mTOR/c-Myc signaling in the apoptotic effect of Compound K (CK), an active ginseng saponin metabolite, was explored in HepG2 and Huh7 human hepatocellular carcinoma cells (HCCs). Here, CK exerted significant cytotoxicity, increased sub-G1, and attenuated the expression of pro-Poly (ADP-ribose) polymerase (pro-PARP) and Pro-cysteine aspartyl-specific protease (pro-caspase3) in HepG2 and Huh7 cells. Consistently, CK suppressed AKT/mTOR/c-Myc and their downstreams such as Hexokinase 2 (HK2) and pyruvate kinase isozymes M2 (PKM2) in HepG2 and Huh7 cells. Additionally, CK reduced c-Myc stability in the presence or absence of cycloheximide in HepG2 cells. Furthermore, AKT inhibitor LY294002 blocked the expression of p-AKT, c-Myc, HK2, PKM2, and pro-cas3 in HepG2 cells. Pyruvate blocked the ability of CK to inhibit p-AKT, p-mTOR, HK2, and pro-Cas3 in treated HepG2 cells. Overall, these findings provide evidence that CK induces apoptosis via inhibition of glycolysis and AKT/mTOR/c-Myc signaling in HCC cells as a potent anticancer candidate for liver cancer clinical translation.
Collapse
Affiliation(s)
- Nari Shin
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Woon Yi Park
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Ah Reum Cho
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee university, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee university, Seoul, South Korea
| |
Collapse
|
16
|
Orexin-A protects against cerebral ischemia-reperfusion injury by inhibiting excessive autophagy through OX1R-mediated MAPK/ERK/mTOR pathway. Cell Signal 2020; 79:109839. [PMID: 33212156 DOI: 10.1016/j.cellsig.2020.109839] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Orexin A (OXA) is a neuroprotective peptide that exerts protective effects on multiple physiological and pathological processes. Activation of autophagy is linked to the occurrence of cerebral ischemia-reperfusion injury (CIRI); however, its function remains incompletely understood. In this study, OXA was sought to exert its neuroprotective role by regulating autophagy in oxygen and glucose deprivation and reoxygenation (OGD/R) model and middle cerebral artery occlusion (MCAO) model of rats, and to elucidate the underlying molecular mechanisms. Acridine orange (AO) staining was used to evaluate autophagic vacuoles. Cell viability was measured by CCK8. The levels of p-ERK1/2, t-ERK1/2, p-mTOR, LC3B, Beclin 1, and p62 were evaluated by western blotting. Apoptosis rate was detected by Hoechst 33342 staining and Terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL). OXA treatment alleviated neuronal apoptosis and significantly inhibited autophagy activity. Mechanistically, OXA exerted its neuroprotective effects in vivo and in vitro by suppressing over-activated autophagy by modulating OX1R-mediated MAPK/ERK/mTOR pathway. The results of this study elucidate the roles of autophagy in CIRI and the mechanisms underlying the neuroprotective action of OXA. Our findings could facilitate the development of novel therapeutics for ischemic stroke.
Collapse
|
17
|
Liu Y, Feng M, Chen H, Yang G, Qiu J, Zhao F, Cao Z, Luo W, Xiao J, You L, Zheng L, Zhang T. Mechanistic target of rapamycin in the tumor microenvironment and its potential as a therapeutic target for pancreatic cancer. Cancer Lett 2020; 485:1-13. [PMID: 32428662 DOI: 10.1016/j.canlet.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer(PC) is a devastating disease with a poor prognosis; however, few treatment options are available and the search continues for feasible molecular therapeutic targets, both in the tumor itself and in the tumor microenvironment. The mechanistic target of rapamycin (mTOR) signaling pathway has emerged as an attractive target due to its regulatory role in multiple cellular processes, including metabolism, proliferation, survival, and differentiation, under physiological and pathological conditions. Although mTOR-regulated events in tumor cells and the tumor microenvironment are known to restrict the development and growth of tumor cells, monotherapy with mTOR inhibitors has shown limited efficacy against PC to date, suggesting the need for alternative approaches. In this review, we describe the mechanisms by which mTOR modulates the PC microenvironment and suggest ways its function in immune cells might be exploited for the treatment of PC. We also discuss preclinical and clinical studies with mTOR inhibitors in combination with other therapeutic strategies, most notably immunotherapy. Finally, we highlight the promise that mTOR combinatorial therapy may hold for the treatment of PC in the near future.
Collapse
Affiliation(s)
- Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mengyu Feng
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China; Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
18
|
Zhou J, Wang H, Che J, Xu L, Yang W, Li Y, Zhou W. Silencing of microRNA-135b inhibits invasion, migration, and stemness of CD24 +CD44 + pancreatic cancer stem cells through JADE-1-dependent AKT/mTOR pathway. Cancer Cell Int 2020; 20:134. [PMID: 32351328 PMCID: PMC7183669 DOI: 10.1186/s12935-020-01210-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies have emphasized determining the ability of microRNAs (miRNAs) as crucial regulators in the occurrence and development of pancreatic cancer (PC), which continues to be one of the deadliest malignancies with few effective therapies. The study aimed to investigate the functional role of miR-135b and its associated mechanism to unravel the biological characteristics of tumor growth in pancreatic cancer stem cells (PCSCs). Methods Microarray analyses were initially performed to identify the PC-related miRNAs and genes. The expression of miR-135b and PCSC markers in PC tissues and cells was determined by RT-qPCR and western blot analysis, respectively. The potential gene (JADE-1) that could bind to miR-135b was confirmed by the dual-luciferase reporter assay. To investigate the tumorigenicity, migration, invasion, and stemness of PC cells, several gain-of-function and loss-of-function genetic experiments were conducted. Finally, tumor formation in nude mice was conducted to confirm the results in vivo. Results miR-135b was highly-expressed in PC tissues and PCSCs, which was identified to specifically target JADE-1. The overexpression of miR-135b promoted proliferation, migration, and invasion of PCSC, inhibited cell apoptosis and increased the expression of stemness-related factors (Sox-2, Oct-4, Nanog, Aldh1, and Slug). Moreover, miR-135b could promote the expression of phosphorylated AKT and phosphorylated mTOR in the AKT/mTOR pathway. Additionally, miR-135b overexpression accelerated tumor growth in nude mice. Conclusions Taken together, the silencing of miR-135b promotes the JADE-1 expression, which inactivates the AKT/mTOR pathway and ultimately results in inhibition of self-renewal and tumor growth of PCSCs. Hence, this study contributes to understanding the role of miR-135 in PCSCs and its underlying molecular mechanisms to aid in the development of effective PC therapeutics.
Collapse
Affiliation(s)
- Jingyang Zhou
- 1Class 182, Queen Mary School, Medical Department, Nanchang University, Nanchang, 330031 People's Republic of China
| | - Haihong Wang
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| | - Jinhui Che
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| | - Lu Xu
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| | - Weizhong Yang
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| | - Yunjiu Li
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| | - Wuyuan Zhou
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, No. 131 Huancheng Rd., Gulou District, Xuzhou, 221000 Jiangsu People's Republic of China
| |
Collapse
|
19
|
Qingyihuaji formula reverses gemcitabine resistant human pancreatic cancer through regulate lncRNA AB209630/miR-373/EphB2-NANOG signals. Biosci Rep 2019; 39:BSR20190610. [PMID: 31147453 PMCID: PMC6579980 DOI: 10.1042/bsr20190610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
To investigate the possible mechanism of Qingyihuaji formula (QYHJ) for reversing gemcitabine (GEM) resistant human pancreatic cancer. Cell proliferation, apoptosis, migration and invasion were detected in CFPAC-1 cells. Xenograft mice established with CFPAC-1 through subcutaneous on 33 immunodeficient nude mice and randomly divided into four groups: vehicle, GEM (35 mg/kg), QYHJ (40 g/kg), and GEM + QYHJ (35 mg/kg + 40 g/kg) groups for 28-day treatment. Tumor growth and the mRNA expression of lncRNA AB209630, miR373, EphB2, and NANOG evaluated in dissected tumor tissue by real-time PCR, the CD133+ cancer stem cells were isolated by flow cytometer, and the changes of the tumor sphere forming were measured. QYHJ, especially the combination of GEM and QYHJ, was significantly inhibited the cell proliferation and migration of CFPAC-1 in vitro in the indicated times. The combination of GEM and QYHJ also remarkably promoted the cell apoptosis of CFPAC-1. QYHJ treatment effectively blocked the tumor growth in nude mice. QYHJ, especially GEM + QYHJ treatment, was significantly increased the mRNA expression of lncRNA AB209630, significantly decreased the mRNA levels of miR373, EphB2 and NANOG, and markedly reduced the tumor sphere formation and the numbers of CD133+ stem cells. In addition, GEM alone treatment had no significant effect in the above biomarker changes. QYHJ could effectivly enhance the antihuman pancreatic tumor activity of GEM, which may be through inhibiting pancreatic cancer stem cell differentiation by lncRNA AB209630/miR-373/EphB2-NANOG signaling pathway.
Collapse
|